Fant 9854 publikasjoner. Viser side 1 av 395:
A Nano Risk Governance Portal supporting risk governance of nanomaterials and nano-enabled products
isk governance (RG) of nanomaterials (NMs) has been at the focus of the Horizon 2020 Programme of the European Union, through the funding of three research projects (Gov4Nano, NANORIGO, RISKGONE). The extensive collaboration of the three projects, in various scientific topics, aimed to enhance RG of NMs and provide a solid scientific basis for effective collaboration of the various types of stakeholders involved. In this paper the development of a digital Nano Risk Governance Portal (NRGP) and associated information technology (IT) infrastructure supporting the risk governance of (engineered) nanomaterials and nano-enabled products, is presented, alongside considerations for future work and enhancement within the domain of Advanced Materials (AdMa). This paper describes several elements of this digital portal, which serves as a single-entry point for all stakeholders in need of, or interested in, nano-risk governance aspects. In its simplest form, the NRGP allows users to be efficiently guided towards tailored information about nanomaterials, risk governance concepts, guidance documents, harmonized methods for risk assessment, publicly accessible data, information and knowledge, as well as a directory of tools, to assess the exposure and hazard of nanomaterials and perform Safe-and-Sustainable-by-Design (SSbD) assessment in the context of nano-risk governance. This paper presents the technical implementation and the content of the first version of the NRGP alongside the vision for the future and further plans for development, implementation, hosting and maintenance of the NRGP aimed at ensuring its sustainability. This includes a procedure to link to, or include, currently available and future (nano)material-related (cloud) platforms, decision support systems, tools, guidance, and databases in line with good governance objectives.
Elsevier
2025
Regulatory practices on the genotoxicity testing of nanomaterials and outlook for the future
Elsevier
2025
This study builds upon the findings of a FAIRMODE intercomparison exercise conducted in a district of Antwerp, Belgium, where a comprehensive dataset of air pollutant measurements (air quality stations and passive samplers) was available. Long-term average NO2 concentrations at very high spatial resolution were estimated by several dispersion modelling systems (Martín et al., 2024) to investigate the ability of these to capture the detailed spatial distribution of NO2 concentrations at the microscale in urban environments. In this follow-up research, we extend the analysis by evaluating the capability of these modelling systems to predict the NO2 annual limit value exceedance areas (LVEAs) and spatial representativeness areas (SRAs) for NO₂ at two reference air quality stations. The different modelling approaches used are based on CFD, Lagrangian, Gaussian, and AI-driven models.
The different modelling approaches are generally good at predicting the LVEA and SRAs of urban air quality stations, although a small SRA (corresponding to low concentration tolerances or the traffic station) is more difficult to predict correctly. However, there are notable differences in performance among the modelling systems. Those based on CFD models seem to provide more consistent results predicting LVEAs and SRAs. Then, lower accuracy is obtained with AI-based systems, Lagrangian models, and Gaussian models with street canyon parameterizations. The Gaussian models with street-canyon parametrizations show significantly better results than models using simply a Gaussian dispersion parametrization.
Furthermore, little differences are observed in most of the statistical indicators corresponding to the LVEA and SRA estimates obtained from the unsteady full month CFD simulations compared to those from the scenario-based CFD simulation methodologies, but there are some noticeable differences in the LVEA or SRA (traffic station, 10 % tolerance) sizes. The number of scenarios does not seem to be relevant to the results. Different bias correction methodologies are explored.
Elsevier
2025
Sources of ultrafine particles at a rural midland site in Switzerland
Ultrafine particles (UFPs; i.e., atmospheric aerosol particles smaller than 100 nm in diameter) are known to be responsible for a series of adverse health effects as they can deposit in humans' bodies. So far, most field campaigns studying the sources of UFPs have focused on urban environments. This study investigates the outdoor sources of UFPs at the atmospheric monitoring station in Payerne, which represents a typical rural location in Switzerland. We aim to quantify the primary and secondary fractions of UFPs based on specific measurements between July 2020 and July 2021 complementing a series of operational meteorological, trace gas and in situ aerosol observations. To distinguish between primary and secondary contributions, we use a method that relies on measuring the fraction of non-volatile particles as a proxy for primary particles. We further compare our measurement results to previously established methods. We find that primary particles resulting from traffic and residential wood burning (direct emissions – mostly non-volatile BC-rich) contribute less than 40 % to the total number of UFPs, mostly in the Aitken mode. On the other hand, we observe local new particle formation (NPF) events (observed from ∼ 1 nm) evident from the increase in cluster ions (1.5–3 nm) and nucleation-mode particle (2.5–25 nm) concentrations, especially in spring and summer. These events, mediated by sulfuric acid, contribute to increasing the UFP number concentration, especially in the nucleation mode. Besides NPF, the chemical processing of particles emitted from multiple sources (including traffic and residential wood burning) contributes substantially to the nucleation-mode particle concentration. Under the present conditions investigated here, we find that secondary processes mediate the increase in UFP concentration to levels equivalent to those in urban locations, affecting both air quality and human health.
2025
Marine plastic litter is subject to different abiotic and biotic forces that lead to its degradation, the main driver being UV-induced photodegradation. Since UV-exposure leads to both physical and chemical degradation of plastic, leading to a release of micro- and nanoplastics as well as leaching of chemicals and degradation products – it is expected to have radical impacts on plastics fate and effects in the marine environment. The number of laboratory studies investigating the mechanisms of plastic UV-degradation in seawater has increased significantly in the past 10 years, but are the exposures designed in a manner that allow observations to be extrapolated to environmental fate? Most studies to date focus on quantifying plastic fragmentation and surface changes, but is this relevant for impact assessments? Here, we provide a review of the current scientific literature on UV-degradation of plastic under marine conditions. Plastic fragmentation processes and surface changes as well as implications of UV-degradation of plastics on additive leaching and the toxicity of UV-weathered versus non-weathered plastics are highlighted. Furthermore, experimental set-ups are critically inspected and recommendations for future studies are issued.
Elsevier
2025
Skadelige mengder av dette kjemikaliet lekker ut av mat- og drikkeemballasje
Norges forskningsråd
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025