Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2627 publikasjoner. Viser side 76 av 263:

Publikasjon  
År  
Kategori

Recent Arctic ozone depletion: Is there an impact of climate change?

Pommereau, Jean-Pierre; Goutail, Florence; Pazmino, Andrea; Lefèvre, Franck; Chipperfield, Martyn P.; Feng, Wuhu; van Roozendael, Michel; Jepsen, Nis; Hansen, Georg; Kivi, Rigel; Bognar, Kristof; Strong, Kimberly; Walker, Kaley; Kuzmichev, Alexandr; Khattatov, Slava; Sitnikova, Vera

After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.

Elsevier

2018

Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras

Dinger, Anna Solvejg; Stebel, Kerstin; Cassiani, Massimo; Ardeshiri, Hamidreza; Bernardo, Cirilo; Kylling, Arve; Park, Soon-Young; Pisso, Ignacio; Schmidbauer, Norbert; Wasseng, Jan Henrik; Stohl, Andreas

In atmospheric tracer experiments, a substance is released into the turbulent atmospheric flow to study the dispersion parameters of the atmosphere. That can be done by observing the substance's concentration distribution downwind of the source. Past experiments have suffered from the fact that observations were only made at a few discrete locations and/or at low time resolution. The Comtessa project (Camera Observation and Modelling of 4-D Tracer Dispersion in the Atmosphere) is the first attempt at using ultraviolet (UV) camera observations to sample the three-dimensional (3-D) concentration distribution in the atmospheric boundary layer at high spatial and temporal resolution. For this, during a three-week campaign in Norway in July 2017, sulfur dioxide (SO2), a nearly passive tracer, was artificially released in continuous plumes and nearly instantaneous puffs from a 9m high tower. Column-integrated SO2 concentrations were observed with six UV SO2 cameras with sampling rates of several hertz and a spatial resolution of a few centimetres. The atmospheric flow was characterised by eddy covariance measurements of heat and momentum fluxes at the release mast and two additional towers. By measuring simultaneously with six UV cameras positioned in a half circle around the release point, we could collect a data set of spatially and temporally resolved tracer column densities from six different directions, allowing a tomographic reconstruction of the 3-D concentration field. However, due to unfavourable cloudy conditions on all measurement days and their restrictive effect on the SO2 camera technique, the presented data set is limited to case studies. In this paper, we present a feasibility study demonstrating that the turbulent dispersion parameters can be retrieved from images of artificially released puffs, although the presented data set does not allow for an in-depth analysis of the obtained parameters. The 3-D trajectories of the centre of mass of the puffs were reconstructed enabling both a direct determination of the centre of mass meandering and a scaling of the image pixel dimension to the position of the puff. The latter made it possible to retrieve the temporal evolution of the puff spread projected to the image plane. The puff spread is a direct measure of the relative dispersion process. Combining meandering and relative dispersion, the absolute dispersion could be retrieved. The turbulent dispersion in the vertical is then used to estimate the effective source size, source timescale and the Lagrangian integral time. In principle, the Richardson–Obukhov constant of relative dispersion in the inertial subrange could be also obtained, but the observation time was not sufficiently long in comparison to the source timescale to allow an observation of this dispersion range. While the feasibility of the methodology to measure turbulent dispersion could be demonstrated, a larger data set with a larger number of cloud-free puff releases and longer observation times of each puff will be recorded in future studies to give a solid estimate for the turbulent dispersion under a variety of stability conditions.

2018

Maternal-Child Exposures to Persistent Organic Pollutants in Dhaka, Bangladesh

Leung, Michael; Nøst, Therese Haugdahl; Wania, Frank; Papp, Eszter Agnes; Herzke, Dorte; Mahmud, Abdullah Al; Roth, Daniel E

Springer Nature

2018

End-user feedback on a low-cost portable air quality sensor system — Are we there yet?

Robinson, Johanna A.; Kocman, David; Horvat, Milena; Bartonova, Alena

MDPI

2018

Interaction Between Anode Aggregate and Binder in the Sessile Drop Wetting Test

Rausch, Bruno; Chmelar, Juraj; Linga, Hogne; Lossius, Lorentz Petter; Thorne, Rebecca Jayne; Tomkute, Viktorija

Springer

2018

CSF sodium at toxic levels precedes delirium in hip fracture patients

Hassel, Bjørnar; Mariussen, Espen; Idland, Ane-Victoria; Dahl, Gry Torsæter; Ræder, Johan; Frihagen, Frede Jon; Berg, Jens Petter; Chaudhry, Farrukh Abbas; Wyller, Torgeir Bruun; Watne, Leiv

Elsevier

2018

Organic micropollutants in the riverine sedimentsalong the lower stretch of the River Ganga: Occurrences, sources and risk assessment

Chakraborty, Paromita; Mukhopadhyay, Moitraiyee; Sampath, Srimurali; Ramaswamy, BabuRajendran; Katsoyiannis, Athanasios A.; Cincinelli, Alessandra; Snow, Daniel

Elsevier

2018

Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields

Balkanski, Y.; Menut, L.; Garnier, E; Wang, R; Evangeliou, Nikolaos; Jourdain, S.; Eschstruth, C.; Vrac, M; Yiou, P.

The 1783–1784 Laki eruption provides a natural experiment to evaluate the performance of chemistry-transport models in predicting the health impact of air particulate pollution. There are few existing daily meteorological observations during the second part of the 18th century. Hence, creating reasonable climatological conditions for such events constitutes a major challenge. We reconstructed meteorological fields for the period 1783–1784 based on a technique of analogues described in the Methods. Using these fields and including detailed chemistry we describe the concentrations of sulphur (SO2/SO4) that prevail over the North Atlantic, the adjoining seas and Western Europe during these 2 years. To evaluate the model, we analyse these results through the prism of two datasets contemporary to the Laki period: • The date of the first appearance of ‘dry fogs’ over Europe, • The excess mortality recorded in French parishes over the period June–September 1783. The sequence of appearances of the dry fogs is reproduced with a very-high degree of agreement to the first dataset. High concentrations of SO2/SO4 are simulated in June 1783 that coincide with a rapid rise of the number of deceased in French parishes records. We show that only a small part of the deceased of the summer of 1783 can be explained by the present-day relationships between PM2.5 and relative risk. The implication of this result is that other external factors such as the particularly warm summer of 1783, and the lack of health care at the time, must have contributed to the sharp increase in mortality over France recorded from June to September 1783.

2018

Social-environmental analysis of methane in the South China Sea and bordering countries

Tseng, Hsiao-Chun; Newton, Alice; Chen, Chen-Tung Arthur; Borges, Alberto V.; DelValls, T. Angel

2018

New brominated flame retardants and dechlorane plus in the Arctic: Local sources and bioaccumulation potential in marine benthos

Carlsson, Pernilla; Vrana, Branislav; Sobotka, Jaromír; Borgå, Katrine; Bohlin-Nizzetto, Pernilla; Varpe, Øystein

Pergamon Press

2018

Publikasjon
År
Kategori