Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2627 publikasjoner. Viser side 77 av 263:

Publikasjon  
År  
Kategori

Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids

Costantini, David; Blévin, Pierre; Herzke, Dorte; Moe, Børge; Gabrielsen, Geir W.; Bustnes, Jan Ove; Chastel, Olivier

Elsevier

2018

Organochlorines, perfluoroalkyl substances, mercury, and egg incubation temperature in an Arctic seabird: Insights from data loggers

Blévin, Pierre; Shaffer, Scott A.; Bustamante, Paco; Angelier, Frédéric; Picard, Baptiste; Herzke, Dorte; Moe, Børge; Gabrielsen, Geir W.; Bustnes, Jan Ove; Chastel, Olivier

In birds, incubation‐related behaviors and brood patch formation are influenced by hormonal regulation such as prolactin secretion. Brood patch provides efficient heat transfer between the incubating parent and the developing embryo in the egg. Importantly, several environmental contaminants are already known to have adverse effects on avian reproduction. However, relatively little is known about the effect of contaminants on incubation temperature (Tinc) in wild birds. By using temperature thermistors placed into artificial eggs, we investigated whether the most contaminated parent birds are less able to provide appropriate egg warming and thus less committed to incubating their clutch. Specifically, we investigated the relationships among 3 groups of contaminants (organochlorines, perfluoroalkyl substances [PFASs], and mercury [Hg]) with Tinc and also with prolactin concentrations and brood patch size in incubating Arctic black‐legged kittiwakes (Rissa tridactyla). Our results reveal that among the organochlorines considered, only blood levels of oxychlordane, the main metabolite of chlordane, a banned pesticide, were negatively related to the minimum incubation temperature in male kittiwakes. Levels of PFASs and Hg were unrelated to Tinc in kittiwakes. Moreover, our study suggests a possible underlying mechanism: since we reported a significant and negative association between blood oxychlordane concentrations and the size of the brood patch in males. Finally, this reduced Tinc in the most oxychlordane‐contaminated kittiwakes was associated with a lower egg hatching probability.

Pergamon Press

2018

A Portable Tool for the Evaluation of Microclimate Conditions within Museum Enclosures, Transit Frames, and Transport Cases

Odlyha, Marianne; Slater, Jonathon M.; Grøntoft, Terje; Jakiela, Slawomir; Obarzanowski, Michal; Thickett, David; Hackney, Stephen; Andrade, Guillermo; Wadum, Jørgen; Christensen, Anne Haack; Scharff, Mikkel

Taylor & Francis

2018

A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model

Pérez, Claudio Fabian; Bianchi, María Martha; Gassmann, María Isabel; Tonti, Natalia; Pisso, Ignacio

Elsevier

2018

Seasonality of aerosol optical properties in the Arctic

Schmeisser, Lauren; Backman, John; Ogren, John A.; Andrews, Elisabeth; Asmi, Eija; Starkweather, Sandra; Uttal, Taneil; Fiebig, Markus; Sharma, Sangeeta; Eleftheriadis, Kostas; Vratolis, Stergios; Bergin, Michael; Tunved, Peter; Jefferson, Anne

Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties – including the aerosol light-scattering coefficient, absorption coefficient, single-scattering albedo, scattering Ångström exponent, and asymmetry parameter – are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport, and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47Mm−1), and the lowest annual mean scattering coefficient is measured at Summit (1.74Mm−1). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48Mm−1), and Summit has the lowest annual mean absorption coefficient (0.12Mm−1). At the Arctic monitoring stations analyzed here, mean annual single-scattering albedo ranges from 0.909 (at Pallas) to 0.960 (at Barrow), the mean annual scattering Ångström exponent ranges from 1.04 (at Barrow) to 1.80 (at Summit), and the mean asymmetry parameter ranges from 0.57 (at Alert) to 0.75 (at Summit). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the seasonal cycles presented is that the Arctic cannot be treated as one common and uniform environment but rather is a region with ample spatiotemporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.

2018

Effect of seasonal mesoscale and microscale meteorological conditions in Ny-Ålesund on results of monitoring of long-range transported pollution

Dekhtyareva, Alena; Holmén, Kim; Maturilli, Marion; Hermansen, Ove; Graversen, Rune

Ny-Ålesund is an international research settlement where the thermodynamics and chemical composition of the air are monitored. The present work investigates the effects of micrometeorological conditions, mesoscale dynamics and local air pollution on the data collected at two different locations around the village. Daily filter measurements of sulphur dioxide and non-sea salt sulphate from the temporary Ny-Ålesund station and permanent Zeppelin mountain station have been analysed along with meteorological data. The influence of different factors representing micrometeorological phenomena and local pollution from ships has been statistically investigated. Seasonal variation of the correlation between the data from Ny-Ålesund and Zeppelin stations is revealed, and the seasonal dependence of the relative contribution of different factors has been analysed. The median concentrations of SO42- measured in Ny-Ålesund increased significantly on days with temperature inversions in winter. In spring, concentrations of SO2 and SO42- were higher than normal at both stations on days with temperature inversions, but lower on days with strong humidity inversions. In summer, local ship traffic affects the SO2 data set from Ny-Ålesund, while no statistically significant influence on the Zeppelin data set has been observed. The pollution from ships has an effect on SO42- values at both stations; however, the concentrations in Ny-Ålesund were higher when local pollution accumulated close to the ground in days with strong humidity inversions.

2018

Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas

Köenigk, Torben; Gao, Yongqi; Gastineau, Guillaume; Keenlyside, Noel; Nakamura, Tetsu; Ogawa, Fumiaki; Orsolini, Yvan; Semenov, Vladimir A.; Suo, Lingling; Tian, Tian; Wang, Tao; Wettstein, Justin; Yang, Shuting

Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models have been used in order to evaluate the respective impact of the observed Arctic sea ice and sea surface temperature (SST) variations on air temperature variations in mid and high latitude land areas. Two sets of experiments have been designed; in the first set (EXP1), observed daily sea ice concentration and SST variations are used as lower boundary forcing over 1982–2014 while in the second set (EXP2) the SST variations are replaced by the daily SST climatology. The observed winter 2 m air temperature (T2m) variations are relatively well reproduced in a number of mid and high latitude land areas in EXP1, with best agreement in southwestern North America and northern Europe. Sea ice variations are important for the interannual T2m variations in northern Europe but have limited impact on all other mid and high latitude land regions. In particular, sea ice variations do not contribute to the observed opposite variations in the Arctic and mid latitude in our model experiments. The spread across ensemble members is large and many ensemble members are required to reproduce the observed T2m variations over northern Europe in our models. The amplitude of T2m anomalies in the coldest observed winters over northern Europe is not reproduced by our multi-model ensemble means. However, the sea ice conditions in these respective winters and mainly the thermodynamic response to the ice anomalies lead to an enhanced likelihood for occurrence of colder than normal winters and extremely cold winters. Still, the main reason for the observed extreme cold winters is internal atmospheric dynamics. The coldest simulated northern European winters in EXP1 and EXP2 between 1982 and 2014 show the same large scale T2m and atmospheric circulation anomaly patterns as the observed coldest winters, indicating that the models are well able to reproduce the processes, which cause these cold anomalies. The results are robust across all six models used in this study.

Springer

2018

A multi-model comparison of meteorological drivers of surface ozone over Europe

Otero, Noelia; Sillmann, Jana; Mar, Kathleen; Rust, Henning W.; Solberg, Sverre; Andersson, Camilla; Engardt, Magnuz; Bergström, Robert; Bessagnet, Bertrand; Colette, Augustin; Couvidat, Florian; Cuvelier, Cornelius; Tsyro, Svetlana; Fagerli, Hilde; Schaap, Martijn; Manders, Astrid; Mircea, Mihaela; Briganti, Gino; Cappelletti, Andrea; Adani, Mario; D'Isidoro, Massimo; Pay, María Teresa; Theobald, Mark; Vivanco, Marta G.; Wind, Peter; Ojha, Narendra; Raffort, Valentin; Butler, Tim

The implementation of European emission abatement strategies has led to a significant reduction in the emissions of ozone precursors during the last decade. Ground-level ozone is also influenced by meteorological factors such as temperature, which exhibit interannual variability and are expected to change in the future. The impacts of climate change on air quality are usually investigated through air-quality models that simulate interactions between emissions, meteorology and chemistry. Within a multi-model assessment, this study aims to better understand how air-quality models represent the relationship between meteorological variables and surface ozone concentrations over Europe. A multiple linear regression (MLR) approach is applied to observed and modelled time series across 10 European regions in springtime and summertime for the period of 2000–2010 for both models and observations. Overall, the air-quality models are in better agreement with observations in summertime than in springtime and particularly in certain regions, such as France, central Europe or eastern Europe, where local meteorological variables show a strong influence on surface ozone concentrations. Larger discrepancies are found for the southern regions, such as the Balkans, the Iberian Peninsula and the Mediterranean basin, especially in springtime. We show that the air-quality models do not properly reproduce the sensitivity of surface ozone to some of the main meteorological drivers, such as maximum temperature, relative humidity and surface solar radiation. Specifically, all air-quality models show more limitations in capturing the strength of the ozone–relative-humidity relationship detected in the observed time series in most of the regions, for both seasons. Here, we speculate that dry-deposition schemes in the air-quality models might play an essential role in capturing this relationship. We further quantify the relationship between ozone and maximum temperature (mo3 − T, climate penalty) in observations and air-quality models. In summertime, most of the air-quality models are able to reproduce the observed climate penalty reasonably well in certain regions such as France, central Europe and northern Italy. However, larger discrepancies are found in springtime, where air-quality models tend to overestimate the magnitude of the observed climate penalty.

2018

Modeling the Influence of Eutrophication and Redox Conditions on Mercury Cycling at the Sediment-Water Interface in the Berre Lagoon

Pakhomova, Svetlana; Yakushev, Evgeniy; Protsenko, Elizaveta; Rigaud, Sylvain; Cossa, Daniel; Knoery, Joel; Couture, Raoul-Marie; Radakovitch, Olivier; Yakubov, Shamil; Krzeminska, Dominika; Newton, Alice

This study presents a specifically designed Mercury module in a coupled benthic-pelagic reactive-transport model - Bottom RedOx Model (BROM) that allows to study mercury (Hg) biogeochemistry under different conditions. This module considers the transformation of elemental mercury (Hg(0)), divalent mercury (Hg(II)) and methylmercury (MeHg). The behavior of mercury species in the model is interconnected with changes of oxygen, hydrogen sulfide, iron oxides, organic matter, and biota. We simulated the transformation and transport of Hg species in the water column and upper sediment layer under five different scenarios, combining various levels of oxygenation and trophic state in the Berre lagoon, a shallow eutrophic lagoon of the French Mediterranean coast subjected to seasonal anoxia. The first scenario represents the conditions in the lagoon that are compared with experimental data. The four other scenarios were produced by varying the biological productivity, using low and high nutrient (N and P) concentrations, and by varying the redox conditions using different intensity of vertical mixing in the water column. The results of the simulation show that both oxidized and reduced sediments can accumulate Hg, but any shifts in redox conditions in bottom water and upper sediment layer lead to the release of Hg species into the water column. Eutrophication and/or restricted vertical mixing lead to reducing conditions and intensify MeHg formation in the sediment with periodic release to the water column. Oxygenation of an anoxic water body can lead to the appearance of Hg species in the water column and uptake by organisms, whereby Hg may enter into the food web. The comparison of studied scenarios shows that a well-oxygenated eutrophic system favors the conditions for Hg species bioaccumulation with a potential adverse effect on the ecosystem. The research is relevant to the UN Minimata convention, EU policies on water, environmental quality standards and Mercury in particular.

Frontiers Media S.A.

2018

Publikasjon
År
Kategori