Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 775 publikasjoner. Viser side 17 av 33:

Publikasjon  
År  
Kategori

Assessing the impacts of citizen-led policies on emissions, air quality and health

Oliveira, Kevin; Rodrigues, Vera; Slingerland, Stephan; Vanherle, Kris; Soares, Joana; Rafael, Sandra; Trozzi, Carlo; Bouman, Evert; Ferreira, José Alexandre; Kewo, Angreine; Nielsen, Per Sieverts; Diafas, Iason; Monteiro, Alexandra; Miranda, Andreia I.; Lopes, Marta Júlia Marques; Hayes, Enda T.

Academic Press

2021

The Integrated Carbon Observation System in Europe

Heiskanen, Jouni; Brümmer, Christian; Buchmann, Nina; Calfapietra, Carlo; Chen, Huilin; Gielen, Bert; Gkritzalis, Thanos; Hammer, Samuel; Hartman, Susan; Herbst, Mathias; Janssens, Ivan A.; Jordan, Armin; Juurola, Eija; Karstens, Ute; Kasurinen, Ville; Kruijt, Bart; Lankreijer, Harry; Levin, Ingeborg; Linderson, Maj-Lena; Loustau, Denis; Merbold, Lutz; Myhre, Cathrine Lund; Papale, Dario; Pavelka, Marian; Pilegaard, Kim; Ramonet, Michel; Rebmann, Corinna; Rinne, Janne; Rivier, Leonard; Saltikoff, Elena; Sanders, Richard; Steinbacher, Martin; Steinhoff, Tobias; Watson, Andrew; Vermeulen, Alex T.; Vesala, Timo; Vitkova, Gabriela; Kutsch, Werner

Since 1750, land use change and fossil fuel combustion has led to a 46 % increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limiting global temperature increases to well below 2°C above pre-industrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere is sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.

American Meteorological Society

2021

Relationship between cloud condensation nuclei (CCN) concentration and aerosol optical depth in the Arctic region

Ahn, Seo H.; Yoon, Young-Jun; Choi, Taejin; Lee, Jiyi; Kim, Yong Pyo; Lee, Bangyoung Young; Ritter, Christoph; Aas, Wenche; Krejčí, Radovan; Ström, Johan; Tunved, Peter; Jung, Chang-hoon

Elsevier

2021

Longitudinal changes in concentrations of persistent organic pollutants (1986–2016) and their associations with type 2 diabetes mellitus

Charles, Dolley; Berg, Vivian; Nøst, Therese Haugdahl; Bergdahl, Ingvar A.; Huber, Sandra; Ayotte, Pierre; Wilsgaard, Tom; Averina, Maria; Sandanger, Torkjel M; Rylander, Charlotta

Elsevier

2022

Information Requirements under the Essential-Use Concept: PFAS Case Studies

Glüge, Juliane; London, Rachel; Cousins, Ian T.; Dewitt, Jamie; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Miller, Mark; Ng, Carla A.; Patton, Sharyle; Trier, Xenia; Wang, Zhanyun; Scheringer, Martin

2021

Tackling Data Quality When Using Low-Cost Air Quality Sensors in Citizen Science Projects

Watne, Ågot K.; Linden, Jenny; Willhelmsson, Jens; Fridén, Håkan; Gustafsson, Malin; Castell, Nuria

Frontiers Media S.A.

2021

Spatial trends of chlorinated paraffins and dechloranes in air and soil in a tropical urban, suburban, and rural environment

Nipen, Maja; Vogt, Rolf David; Bohlin-Nizzetto, Pernilla; Borgå, Katrine; Mwakalapa, Eliezer Brown; Borgen, Anders; Jørgensen, Susanne Jøntvedt; Ntapanta, Samwel Moses; Mmochi, Aviti John; Schlabach, Martin; Breivik, Knut

Springer

2021

Emissions of Tetrafluoromethane (CF4) and Hexafluoroethane (C2F6) From East Asia: 2008 to 2019

Kim, Jooil; Thompson, Rona Louise; Park, Hyeri; Bogle, Stephanie; Mühle, Jens; Park, Mi-Kyung; Kim, Yeaseul; Harth, Christina M.; Salameh, Peter K.; Schmidt, Roland; Ottinger, Deborah; Park, Sunyoung; Weiss, Ray F.

American Geophysical Union (AGU)

2021

The SCCS scientific advice on the safety of nanomaterials in cosmetics

Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Gaffet, Eric; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Vanhaecke, Tamara; Wijnhoven, Susan; von Goetz, Natalie; de Jong, Wim H.

Elsevier

2021

Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand

McConnell, Joseph R.; Chellman, Nathan J; Mulvaney, Robert; Eckhardt, Sabine; Stohl, Andreas; Plunkett, Gill; Kipfstuhl, Sepp; Freitag, Johannes; Isaksson, Elisabeth; Gleason, Kelly; Brugger, Sandra O.; McWethy, David B.; Abram, Nerilie J.; Liu, Pengfei; Aristarain, Alberto J.

New Zealand was among the last habitable places on earth to be colonized by humans. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Māori settlement, but the precise timing and magnitude of associated biomass-burning emissions are unknown, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling demonstrates that the observed deposition could result only from increased emissions poleward of 40° S—implicating fires in Tasmania, New Zealand and Patagonia—but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Māori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y−1 during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere.

2021

Large Circulation Patterns Strongly Modulate Long-Term Variability of Arctic Black Carbon Levels and Areas of Origin

Stathopoulos, Vasileios; Evangeliou, Nikolaos; Stohl, Andreas; Vratolis, Stergios; Matsoukas, Christos; Eleftheriadis, Konstantinos

American Geophysical Union (AGU)

2021

The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project

Ricaud, Philippe; Attié, Jean-Luc; Chalinel, Rémi; Pasternak, Frédérick; Léonard, Joël; Pison, Isabelle; Pattey, Elizabeth; Thompson, Rona Louise; Zelinger, Zdenek; Lelieveld, Jos; Sciare, Jean; Saitoh, Naoko; Warner, Juying; Fortems-Cheiney, Audrey; Reynal, Hélène; Vidot, Jérôme; Brooker, Laure; Berdeu, Laurent; Saint-Pé, Olivier; Patra, Prabir K.; Dostál, Michal; Suchánek, Jan; Nevrlý, Václav; Zwaaftink, Christine Groot

2021

Good Agreement Between Modeled and Measured Sulfur and Nitrogen Deposition in Europe, in Spite of Marked Differences in Some Sites

Marchetto, Aldo; Simpson, David; Aas, Wenche; Fagerli, Hilde; Hansen, Karin; Pihl-Karlsson, Gunilla; Karlsson, Per Erik; Rogora, Michela; Sanders, Tanja G.M.; Schmitz, Andreas; Seidling, Walter; Thimonier, Anne; Tsyro, Svetlana; de Vries, Wim; Waldner, Peter

Frontiers Media S.A.

2021

Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions?

Paunu, Ville-Veikko; Karvosenoja, Niko; Segersson, David; Lopez-Aparicio, Susana; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Thorsteinsson, Throstur; Niemi, Jarkko V; Vo, Dam Thanh; van der Gon, Hugo A.C. Denier; Brandt, Jørgen; Geels, Camilla

Elsevier

2021

Calibration and assessment of electrochemical low-cost sensors in remote alpine harsh environments

Dallo, Frederico; Zannoni, Daniele; Gabrieli, Jacopo; Cristofanelli, Paolo; Calzolari, Francescopiero; de Blasi, Fabrizio; Spolaor, Andrea; Battistel, Dario; Lodi, Rachele; Cairns, Warren R. L.; Fjæraa, Ann Mari; Bonasoni, Paolo; Barbante, Carlo

2021

The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies

Berchet, Antoine; Sollum, Espen; Thompson, Rona Louise; Pison, Isabelle; Thanwerdas, Joel; Broquet, Grégoire; Chevallier, Frédéric; Aalto, Tuula; Berchet, Adrien; Bergamaschi, Peter; Brunner, Dominik; Engelen, Richard; Fortems-Cheiney, Audrey; Gerbig, Christoph; Zwaaftink, Christine Groot; Haussaire, Jean-Matthieu; Henne, Stephan; Houweling, Sanne; Karstens, Ute; Kutsch, Werner L.; Luijkx, Ingrid T.; Monteil, Guillaume; Palmer, Paul I.; van Peet, Jacob C. A.; Peters, Wouter; Peylin, Philippe; Potier, Elise; Rödenbeck, Christian; Saunois, Marielle; Scholze, Marko; Tsuruta, Aki; Zhao, Yuanhong

2021

The who, why and where of Norway's CO2 emissions from tourist travel

Grythe, Henrik; Lopez-Aparicio, Susana

We present emissions from Norway’s tourist travel by the available transport modes, i.e., aviation, maritime (ferries and cruises) and land-based transport (road and railways). Our study includes detailed information on both domestic and international tourist travel within, from and to Norway. We have coupled statistics from several large surveys with detailed emission data to allow us to separate the purpose of the travel (holiday or business).

Total transport emissions for tourists in 2018 were estimated to be 8 530 kt, equivalent to 19% of the reported Norwegian national emissions. Of these emissions, international tourists visiting Norway were responsible for 3 273 kt , whereas travel by Norwegians accounted for 4 875 kt , most of which occur outside Norway’s reporting obligations. Aviation and maritime transport were found to be the largest emission sources, responsible for 71% and 21% of total emissions, respectively. The reduction due to the COVID-19 pandemic was approximately 60% in 2020, and was sustained throughout the year.

Our study shows that officially reported emissions, as limited to the countries territory, are not suitable for accurate evaluation of transport emissions related to tourism. A consumer or tourist-based calculation gives a marked redistribution of emission responsibility. Our results indicate that emissions from Norwegian residents travelling abroad are 1 602 kt higher than those from tourists coming to Norway. This is driven by frequent trips to popular tourist destinations such as Spain, Thailand, Turkey and Greece. Globally consumer based calculations would shift the responsibility of emissions by tourists to the large wealthy nations, with the most international tourists. The understanding of emission distributed by population group or market support in addition the developing of marketing strategies to attract low emission tourist markets and create awareness among the nations with higher shares of international tourist.

Elsevier

2021

Impacts of UV irradiance and medium-energy electron precipitation on the North Atlantic oscillation during the 11-year solar cycle

Guttu, Sigmund; Orsolini, Yvan; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine; Tartaglione, Nazario; Verronen, Pekka T.; Rodger, Craig J.; Clilverd, Mark A.

MDPI

2021

Large seasonal and interannual variations of biogenic sulfur compounds in the Arctic atmosphere (Svalbard; 78.9° N, 11.9° E)

Jang, Sehyun; Park, Ki-Tae; Lee, Kitack; Yoon, Young Jun; Kim, Kitae; Chung, Hyun Young; Jang, Eunho; Becagli, Silvia; Lee, Bang Young; Traversi, Rita; Eleftheriadis, Konstantinos; Krejci, Radovan; Hermansen, Ove

2021

Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard

Song, Congbo; Dall'Osto, Manuel; Lupi, Angelo; Mazzola, Mauro; Traversi, Rita; Becagli, Silvia; Gilardoni, Stefania; Vratolis, Stergios; Yttri, Karl Espen; Beddows, David C.S.; Schmale, Julia; Brean, James; Kramawijaya, Agung Ghani; Harrison, Roy M.; Shi, Zongbo

2021

Dimethyl Sulfide-Induced Increase in Cloud Condensation Nuclei in the Arctic Atmosphere

Park, Ki-Tae; Yoon, Young Jun; Lee, Kitack; Tunved, Peter; Krejci, Radovan; Ström, Johan; Jang, Eunho; Kang, Hyo Jin; Jang, Seyhun; Park, Jiyeon; Lee, Bang Young; Traversi, Rita; Becagli, Silvia; Hermansen, Ove

American Geophysical Union (AGU)

2021

Publikasjon
År
Kategori