Gå til innhold
Vitenskapelig tidsskriftspublikasjon

Predicting the student’s perceptions of multi-domain environmental factors in a Norwegian school building: Machine learning approach

Alam, Azimil Gani; Bartonova, Alena; Høiskar, Britt Ann Kåstad; Fredriksen, Mirjam F.; Sharma , Jivitesh; Mathisen, Hans Martin; Yang, Zhirong; Gustavsen, Kai; Hart, Kent; Fredriksen, Tore; Cao, Guangyu

Publikasjonsdetaljer

Tidsskrift: Building and Environment, vol. 280, 113144, 2025

Doi: doi.org/10.1016/j.buildenv.2025.113144

Sammendrag:
Poor Indoor Environmental Quality (IEQ) in schools significantly impacts students’ well-being, learning capabilities, and health. Perceived dissatisfaction rates (PD%) among students often remain high, even when indoor environmental variables appear well-controlled. This study aims to predict perceived dissatisfaction rates (PD%) across multi-domain environmental factors—thermal, acoustic, visual, and indoor air quality (IAQ)—using machine learning (ML) models. The research integrates sensor-based environmental measurements, outdoor weather data, building parameters, and 1437 student survey responses collected from three classrooms in a Norwegian school across multiple seasons. Statistical tests were used to pre-select relevant input variables, followed by the development and evaluation of multiple ML algorithms. Among the tested ML models, Random Forest (RF) demonstrated the highest predictive accuracy for PD%, outperforming multi-linear regression (MLR) and decision trees (DT), with R² values up to 0.91 for overall IEQ dissatisfaction (PDIEQ%). SHAP analysis revealed key predictors: CO₂ levels, VOCs, humidity, temperature, solar radiation, and room window orientation. IAQ, thermal comfort, and acoustic environment were the most influential factors affecting students' perceived well-being. Despite limitations as implementation in building level scale, the study demonstrates the feasibility of deploying predictive ML models under real-world constraints for improving IEQ monitoring system. The findings support practical strategies for adaptive indoor environmental management, particularly in educational settings, and provide a replicable framework for future research. Future research can expand to other climates, buildings, measurements, occupant levels, and ML training optimization.