Fant 9758 publikasjoner. Viser side 205 av 391:
Is crumb rubber a source for pollutants and harmful effects in the marine environment?
In Norwegian coastal communities, rubber microplastic granules (≤ 5 mm in size) derived from discarded vehicle tires are used in large quantities on outdoor synthetic turf sports pitches. Through transport by waste water effluents and terrestrial runoff, these rubber particles are considered a significant source of MPs to the marine ecosystem. In the here presented interdisciplinary project we study the composition, degradation and environmental impacts of these rubber granules from locations in northern Norway and Svalbard. Their persistence and residence time in the Arctic marine environment is unknown. These rubber particles pose a potential health risk for arctic wild life through direct ingestion, especially at the base of the marine food chain, but may also provide an exposure route for toxic additive chemicals present in tires to marine organisms. Furthermore, the rubber particles may act as a vector for other persistent organic and heavy metal pollutants already present in the marine environment. Arctic marine environments present special abiotic conditions for the degradation of these particles, with cold water temperatures and long periods with unlimited sunlight. During a 12 months period, rubber crumbs were placed out in the ocean in stainless steel containers and sub-sampled continuously for the measurement of persistent organic pollutants, metals and additives. Hydrophobic persistent organic pollutants such as PAHs, PCBs, DDTs, bisphenols, as well as metals were measured to establish the adsorption and leaching kinetics in seawater under in situ conditions. Samples were extracted using ultrasound and nonpolar solvents, followed by GPC and SPE clean up. Chemical analyses using pyroGC/MS, GC/MS/MS and LC/HRMS were done in the laboratories of NILU, Tromsø and SINTEF, Trondheim. Exposure experiments with rubber leachate were also conducted and high mortality rates were found for different marine zooplankton species.
2018
2014
2007
2015
2015
2012
2012
2011
2020
NILU has on behalf of the Norwegian Environment Agency determined the concentration of ionic perfluorinated substances (PFASs), including PFOA, in outdoor clothing. Of the investigated 12 items, no PFAS could be detected at all in only 2 of them (sample 8 and 12). Four samples contained PFOA exceeding the limit of 1 µg/m2. The quality assurance where three replicates of one sample were extracted had a relative standard deviation (RSD) less than 10% for all detected substances except one (PFTrDA). Other quality measures such as recovery calculations and blanks shows that the method used for extraction is suitable for these types of matrices and substances. PFOS was not present in the items investigated, indicating that the textile industry manages to effectively avoid PFOS in their production processes.
2014
NILU has on behalf of the Norwegian Environment Agency determined the concentration of ionic perfluorinated substances (PFASs), including PFOA, in outdoor gear.
Of the investigated 18 items, no PFAS could be detected at all in nine of them. Two samples contained PFOA exceeding the limit of 1 µg/m2. The quality assurance where three replicates of one sample were extracted had a relative standard deviation (RSD) less than 10% for all detected substances except one (PFTrDA). Other quality measures such as recovery calculations and blanks shows that the method used for extraction is suitable for these types of matrices and substances. PFOS was not present in the items investigated, indicating that the textile industry manages to effectively avoid PFOS in their production processes.
2015
The aim of this pilot-study was to use silicone rubber-based passive samplers to measure novel brominated flame retardants (nBFRs), polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in seawater and air around Longyearbyen as well as investigate the presence of those compounds in sediment and biota (amphipods, Gammarus spp.) nearby Longyearbyen. Passive samplers require no electricity and provide an integrated picture of the levels of the targeted compounds over time. The results were combined with the sampled sediment and Gammarus spp. to assess concentrations in the environment. Out of all substances under study, PBDE-47 and -99, α- and β- tetrabromoethylcyclohexane (TBECH), syn- and anti-DP were detected in all investigated matrices. Freely dissolved water concentrations of ΣDPs (3 pg/L) were in line with recent Arctic studies, while ΣPBDEs (3 pg/L) were comparable to urban rivers in southern Norway. Nevertheless, for some compounds, especially the lighter and most volatile ones, long-range transport is most likely a more important contribution to observed levels than local sources. For other compounds, e.g. PBDEs, local sources might still play a role for the load of contaminants into the surrounding environment. The present study is the first to report a suit of nBFRs and DPs in Arctic benthic fauna. Many of the nBFRs and DPs were detected in sediment and in the amphipods. We recommend further studies with respect to measurements of concentrations over time, and in other species as well, to better understand whether the nBFRs and DPs are common in the marine environment on Svalbard. We recommend that local sources of flame retardants in remote areas receive more attention in the future.
Norsk institutt for vannforskning
2018
2005
2005
2010
2000
2008
Low-cost sensors (LCSs) for particulate matter (PM) concentrations have attracted the interest of researchers, supplementing their efforts to quantify PM in higher spatiotemporal resolution. The precision of PM mass concentration measurements from PMS 5003 sensors has been widely documented, though limited information is available regarding their size selectivity and number concentration measurement accuracy. In this work, PMS 5003 sensors, along with a Federal Referral Methods (FRM) sampler (Grimm spectrometer), were deployed across three sites with different atmospheric profiles, an urban (Germanou) and a background (UPat) site in Patras (Greece), and a semi-arid site in Almería (Spain, PSA). The LCSs particle number concentration measurements were investigated for different size bins. Findings for particles with diameter between 0.3 and 10 μm suggest that particle size significantly affected the LCSs’ response. The LCSs could accurately detect number concentrations for particles smaller than 1 μm in the urban (R2 = 0.9) and background sites (R2 = 0.92), while a modest correlation was found with the reference instrument in the semi-arid area (R2 = 0.69). However, their performance was rather poor (R2
MDPI
2023
Investigating the presence and persistence of volatile methylsiloxanes in Arctic sediments
Royal Society of Chemistry (RSC)
2020
2002