Fant 9758 publikasjoner. Viser side 212 av 391:
The MEMORI project (Grant agreement 265132) was performed in the period 2010-2013. The project was coordinated by NILU-Norwegian Institute for Air Research, and included 14 partners, four subcontractors and an advisory end-user group with 8 members. MEMORI aimed at providing the conservation market with innovative, non-destructive, and early warning technology for easy assessment of environmental impact on indoor cultural heritage. For this purpose, a dosimeter and a portable reader instument were produced. In addition, a new web-based result's and presentation mitigation tool was developed.
2014
2011
Mer svevestøv når det er kaldt og vindstille. Slik kan du bidra til mindre luftforurensning.
Norges forskningsråd
2024
Taylor & Francis
2021
2010
2014
This report represents the final version of Deliverable D2.2 on existing statistical data on activities in the relevant economic sectors, abatement measures and scoping.
2015
2015
2016
2005
Mercury emissions inventory for the Abu Dhabi Emirate. Executive summary of the inventory and projections. NILU report
2016
2006
Mercury in air and soil on an urban-rural transect in East Africa
There are large knowledge gaps concerning concentrations, sources, emissions, and spatial trends of mercury (Hg) in the atmosphere in developing regions of the Southern Hemisphere, particularly in urban areas. Filling these gaps is a prerequisite for assessing the effectiveness of international regulation and for enabling a better understanding of the global transport of Hg in the environment. Here we use a passive sampling technique to study the spatial distribution of gaseous elemental Hg (Hg(0), GEM) and assess emission sources in and around Dar es Salaam, Tanzania's largest city. Included in the study were the city's main municipal waste dumpsite and an e-waste processing facility as potential sources of GEM. To complement the GEM data and for a better overview of the Hg contamination status of Dar es Salaam, soil samples were collected from the same locations where passive air samplers were deployed and analysed for total Hg. Overall, GEM concentrations ranged between <0.86 and 5.34 ng m−3, indicating significant local sources within the urban area. The municipal waste dumpsite and e-waste site had GEM concentrations elevated above the background, at 2.41 and 1.77 ng m−3, respectively. Hg concentrations in soil in the region (range 0.0067 to 0.098 mg kg−1) were low compared to those of other urban areas and were not correlated with atmospheric GEM concentrations. This study demonstrates that GEM is a significant environmental issue in the urban region of Dar es Salaam. Further studies from urban areas in the Global South are needed to better identify sources of GEM.
Royal Society of Chemistry (RSC)
2022
2015
2006
Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere
During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.
2022
2017
2016