Fant 10001 publikasjoner. Viser side 23 av 401:
The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000
East Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid-century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long-lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1 (the top-down approach) and −36.1 ± 207.1 Tg CO2eq yr−1 (the bottom-up approach) during 2000–2019. This net GHG sink includes a large land CO2 sink (−1229.3 ± 430.9 Tg CO2 yr−1 based on the top-down approach and −1353.8 ± 158.5 Tg CO2 yr−1 based on the bottom-up approach) being offset by biogenic CH4 and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top-down and bottom-up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2 flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1 to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
2024
Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63–98%), and MCCPs dominated the total CP load (42–68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.
2024
2024
Måling av luftkvalitet i Forsvarets forlegning i Bamako. Målinger for Det norske forsvaret 2022.
NILU
2024
2024
The FAIRness of ACTRIS Data Centre
The purpose of this report is to document the status and implementation of FAIRness within ACTRIS Data centre as of March 2023, developed over the period January 2019 – March 2023.
The report is an extended version of ENVRI-FAIR deliverable D8.4 due March 2023 and available through Zenodo: ENVRI-FAIR D8.4: The FAIRness of ACTRIS | Zenodo, only including the work until autumn 2022. This present report adds more information to the implementation of the FAIR principles by ACTRIS Data Centre over the period January 2019 – March 2023. In addition to D8.4, the present report provides a comprehensive external FAIRness assessment covering the entire period 2019 - 2023, along with an evaluation of the implementation in the years 2022 and the first half of 2023. It's important to note that the project deliverable only encompasses the period from 2019 to 2021.
NILU
2024
2024
Surface warming in Svalbard may have led to increases in highly active ice-nucleating particles
The roles of Arctic aerosols as ice-nucleating particles remain poorly understood, even though their effects on cloud microphysics are crucial for assessing the climate sensitivity of Arctic mixed-phase clouds and predicting their response to Arctic warming. Here we present a full-year record of ice-nucleating particle concentrations over Svalbard, where surface warming has been anomalously faster than the Arctic average. While the variation of ice-nucleating particles active at around −30 °C was relatively small, those active at higher temperatures (i.e., highly active ice-nucleating particles) tended to increase exponentially with rising surface air temperatures when the surface air temperatures rose above 0 °C and snow/ice-free barren and vegetated areas appeared in Svalbard. The aerosol population relevant to their increase was largely characterized by dust and biological organic materials that likely originated from local/regional terrestrial sources. Our results suggest that highly active ice-nucleating particles could be actively released from Arctic natural sources in response to surface warming.
2024
2024
Widespread Pesticide Distribution in the European Atmosphere Questions their Degradability in Air
Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.
2024
2024
NILU har i 2024 bistått Klima- og miljødepartementet (KLD) med en utrednings- og medvirkningsprosess for å se på muligheten for etablering av et samfunnsoppdrag for sirkulær økonomi. Dette er et oppdrag under KLDs rammeavtale for klima- og miljøkunnskap. I regjeringens «Handlingsplan for en sirkulær økonomi» er et av handlingspunktene å utrede et samfunnsoppdrag for sirkulær økonomi. Målet med dette oppdraget var å fasilitere en prosess for å identifisere mulige overordnede mål og delmål og etablere rammen for et mulig nasjonalt samfunnsoppdrag. Aktivitetene i denne fasen inkluderte en serie med koordinerte samskapingsmøter for å mobilisere og engasjere relevante samfunnsaktører og komme fram til en felles forståelse av et mulig målrettet samfunnsoppdrag. Prosessen og resultatene er oppsummert i denne rapporten.
NILU
2024
2024
2024
2024
2024
2024
2024
Assessment of transboundary pollution with heavy metals and POPs
Meteorological Synthesizing Centre – East (MSC-E)
2024
2024
2024