Fant 9850 publikasjoner. Viser side 312 av 394:
2020
2020
Copernicus Atmosphere Monitoring Service
2020
On behalf of Elkem Carbon AS, NILU has carried out measurements of arsenic (As) in the surroundings of Elkem Carbon in Vågsbygd (Kristiansand municipality). The company was ordered by the Norwegian Environment Agency to carry out As-measurements in ambient air. PM10 samples taken with a filter sampler in the residential area on Fiskåtangen (Konsul Wilds vei) were analysed for As by inductively coupled plasma mass spectrometry (ICP-MS). This report covers measurements in the period 25 September 2019 – 28 September 2020. The annual average concentration of As was measured at 2.38 ng/m3. The target value in the air quality directive of 6 ng/m3 was complied with by a good margin. The annual average value was marginally lower than the lower assessment threshold of 2.4 ng/m3. A long range transported contribution to the two highest registered daily As-concentrations cannot be ruled out.
NILU
2020
2020
Munksgaard Forlag
2020
2020
2020
The high persistence of PFAS is sufficient for their management as a chemical class
Royal Society of Chemistry (RSC)
2020
Review on the methodology supporting the health impact assessment by the European Environment Agency
2020
American Chemical Society (ACS)
2020
Seabirds like gulls are common indicators in contaminant monitoring. The herring gull (Larus argentatus) is a generalist with a broad range of dietary sources, possibly introducing a weakness in its representativeness of aquatic contamination. To investigate the herring gull as an indicator of contamination in an urban‐influenced fjord, the Norwegian Oslofjord, we compared concentrations of a range of lipophilic and protein‐associated organohalogen contaminants (OHCs), Hg, and dietary markers in blood (n = 15), and eggs (n = 15) between the herring gull and the strict marine‐feeding common eider (Somateria mollissima) in the breeding period of May 2017. Dietary markers showed that the herring gull was less representative of the marine food web than the common eider. We found higher concentrations of lipophilic OHCs (wet weight and lipid weight) and Hg (dry weight) in the blood of common eider (mean ± SE ∑PCB = 210 ± 126 ng/g ww, 60 600 ± 28 300 ng/g lw; mean Hg = 4.94 ± 0.438 ng/g dw) than of the herring gull (mean ± SE ∑PCB = 19.0 ± 15.6 ng/g ww, 1210 ± 1510 ng/g lw; mean Hg = 4.26 ± 0.438 ng/g dw). Eggs gave opposite results; higher wet weight and lipid weight OHC concentrations in the herring gull (mean ± SE ∑PCB = 257 ± 203 ng/g ww, 3240 ± 2610 ng/g lw) than the common eider (mean ± SE ∑PCB = 18.2 ± 20.8 ng/g ww, 101 ± 121 ng/g lw), resulting in higher OHC maternal transfer ratios in gulls than eiders. We suggest that the matrix differences are due to fasting during incubation in the common eider. We suggest that in urban areas, herring gull might not be representative as an indicator of marine contamination but rather urban contaminant exposure. The common eider is a better indicator of marine pollution in the Oslofjord. The results are influenced by the matrix choice, as breeding strategy affects lipid dynamics regarding the transfer of lipids and contaminants to eggs and remobilization of contaminants from lipids to blood during incubation, when blood is drawn from the mother. Our results illustrate the benefit of a multispecies approach for a thorough picture of contaminant status in urban marine ecosystems. Integr Environ Assess Manag 2020;00:1–12. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
John Wiley & Sons
2020
2020
Microfibers (MFs) are frequently reported as the most dominant type of microplastic (MP) found in the marine water column and sediments. A major source of MFs is the use and washing of textiles. Although WWTPs can remove up to 98% of MP, estimates suggest billions of MP are still released from a single WWTP annually. Intrinsic properties (polymer type, density, size) will influence environmental degradation, settling times, and ingestion of MFs by marine organisms. Less well understood is the influence of environmental degradation on the fate of MFs. In the current study, we compare the effect of UV exposure on the degradation and fragmentation of polyester (PET), polyamide (nylon; PA), polyacrylonitrile (acrylic; PAN) and wool fibers. Degradation of MFs was conducted in seawater under environmentally relevant exposure conditions using simulated sunlight. PA, PET and wool MFs exhibited changes in surface morphology after just 2 weeks from the start of exposure, followed by fragmentation after
2020
2020
Crumb rubber toxicity in coastal marine systems
Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied on indoor and outdoor synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g. pigments, oils, resins, fibers), ELTs contain high levels of organic additive compounds and heavy metals. While previous environmental studies have focused on terrestrial soil and freshwater ecosystems, in Norway many sites applying CRG are coastal. In the current study, the organic chemical and metal content of 'fresh' and 'weathered' CRG and their seawater leachates was investigated, and the uptake of crumb rubber by the brown crab (Cancer pagurus) was studied as an example of an exposure route for CRG to coastal marine organisms. A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g. bisphenols). ICP-MS analysis indicated g/kg quantities of Zn and mg/kg quantities of Fe, Mn, Cu, Co, Cr, Pb and Ni in the CRG. A mixture of organic additives, metals and other inorganic compounds readily leached from the CRG into seawater. Benzothiazole was the organic compound with highest concentration (average of 136 mg/L), while PAHs (ranging from <LOD to 0.58 mg/L) and phenolic compounds (e.g. 2,4-bisphenol F and 4,4’-bisphenol F at 0.012 and 0.006 mg/L, respectively) were present in low abundance. Zn was the most abundant metal in the leachates (23.8 mg/L) followed by Fe (0.08 mg/L) and Co (0.06 mg/L). While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30 day period. Brown crabs were exposed to two concentrations of CRG (0.5 and 0.05 g/L) in two size fractions (5 mm and 250 µm diameter) for 24 hours. Ingestion of the rubber and subsequent gut evacuation were studied over 5 days. Image analysis of filtered stomach contents confirmed uptake of rubber particles in different sizes, but also efficient gut evacuation upon transfer to clean water. We discuss the implications of CRG and leachate toxicity in acute and long-term exposure scenarios for marine coastal ecosystems.
2020