Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10000 publikasjoner. Viser side 312 av 400:

Publikasjon  
År  
Kategori

Abating N in Nordic agriculture - Policy, measures and way forward

Hellsten, Sofie; Dalgaard, Tommy; Rankinen, Katri; Tørseth, Kjetil; Bakken, Lars; Bechmann, Marianne; Kulmala, Airi; Moldan, Filip; Olofsson, Stina; Piil, Kristoffer; Pira, Kajsa; Turtola, Eila

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years.

The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P.

The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries.

To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country.

The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.

2019

Contaminants in Atlantic walruses Part 2: Relationships with endocrine and immune systems

Routti, Heli; Diot, Beatrice; Panti, Cristina; Duale, Nur; Fossi, Maria Cristina; Harju, Mikael; Kovacs, Kit M.; Lydersen, Christian; Scotter, Sophie Ellen; Villanger, Gro Dehli; Bourgeon, Sophie

Marine mammals in the Barents Sea region have among the highest levels of contaminants recorded in the Arctic and the Atlantic walrus (<i>Odobenus rosmarus rosmarus</i>) is one of the most contaminated species within this region. We therefore investigated the relationships bewteen blubber concentrations of lipophilic persistent organic pollutants (POPs) and plasma concentrations of perfluoroalkyl substances (PFASs) and markers of endocrine and immune functions in adult male Atlantic walruses (n = 38) from Svalbard, Norway. To do so, we assessed plasma concentrations of five forms of thyroid hormones and transcript levels of genes related to the endocrine and immune systems as endpoints; transcript levels of seven genes in blubber and 23 genes in blood cells were studied. Results indicated that plasma total thyroxine (TT4) concentrations decreased with increasing blubber concentrations of lipophilic POPs. Blood cell transcript levels of genes involved in the function of T and B cells (FC like receptors 2 and 5, cytotoxic T-lymphocyte associated protein 4 and protein tyrosine phosphatase non-receptor type 22) were increased with plasma PFAS concentrations. These results suggest that changes in thyroid and immune systems in adult male walruses are linked to current levels of contaminant exposure.

2019

Impact of medium-energy electron precipitation on ozone and middle atmosphere dynamics in WACCM simulations

Guttu, Sigmund; Orsolini, Yvan; Stordal, Frode; Limpasuvan, Varavut; Marsh, D.

2019

Air pollution: can subjective perception be related to objective measures?

Bartonova, Alena; Grossberndt, Sonja; Castell, Nuria

2019

Lung cancer risk prediction using DNA methylation markers

Guida, Florence; Nøst, Therese Haugdahl; Relton, Caroline; Vineis, Paolo; Chadeau-Hyam, Marc; Severi, Gianluca; Sandanger, Torkjel M; Johansson, Mattias

2019

Skogovervåking i Norge - tidsserier og trender

Timmermann, Volkmar; Clarke, Nicholas; Jepsen, Jane Uhd; Nordbakken, Jørn-Frode; Økland, Bjørn; Økland, Tonje; Aas, Wenche

2019

Tynnere ozonlag enn normalt over Norge

Solbakken, Christine Forsetlund (intervjuobjekt); Budalen, Andreas (journalist)

2019

Increased nitrous oxide emissions in East Asia as estimated by bottom-up and top-down approaches

Pan, Naiqing; Xu, Rongting; Pan, Shufen; Thompson, Rona Louise; Canadell, Josep G.; Jackson, Robert B.; Winiwarter, Wilfried; Zhou, Feng

2019

Screening program 2018. Volatiles, Gd, BADGE, UV filters, Additives, and Medicines.

Schlabach, Martin; Halse, Anne Karine; Kringstad, Alfhild; Nikiforov, Vladimir; Bohlin-Nizzetto, Pernilla; Pfaffhuber, Katrine Aspmo; Reid, Malcolm James; Rostkowski, Pawel; Vogelsang, Christian

This screening project has focused on the occurrence and environmental fate of chemicals with possible PBT-properties. Samples were from indoor environments, surface waters, municipal wastewater, and the receiving marine environment. Some of the detected chemicals need to be studied in more detail. One UV-filter compound shows a potential environmental risk.

NILU

2019

NILU’s Environmental Management Report 2018

Braathen, Ole-Anders; Marsteen, Leif; Langholen, Trine; Andresen, Eva Beate; Fjeldstad, Heidi

One of NILU’s main goals is to study the impact of pollution and supply decision-makers with a sound scientific platform for choosing measures to reduce the negative impacts. Furthermore, it is very important for the institute to have control of the impact the institute’s own activities may have on the environment and to reduce negative impacts as far as possible.

NILU has for many years been working to improve the status of the environment and to reduce negative impacts. In order to
take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard.

The chosen standard is ISO 14001 (Environmental management systems—Requirements with guidance for use) and NILU
achieved certification according to this standard in October 2010. This report summarizes the results of the system in 2018.

NILU

2019

Mutational Imprints of Cobalt Exposure: A Genome-Scale Multi-system Approach.

Zavadil, J.; Melki, P. N.; Renard, C.; Mariussen, Espen; Rundén-Pran, Elise; Longhin, Eleonora Marte; Dusinska, Maria; Sancey, L.; Busser, B.; Herbert, R. A.; Korenjak, M.

2019

Plastic litter in the European Arctic: What do we know?

Halsband, Claudia; Herzke, Dorte

Despite an exponential increase in available data on marine plastic debris globally, information on levels and trends of plastic pollution and especially microplastics in the Arctic remains scarce. The few available peer-reviewed scientific works, however, point to a ubiquitous distribution of plastic particles in all environmental compartments, including sea ice. Here, we review the current state of knowledge on the sources, distribution, transport pathways and fate of meso- and microplastics with a focus on the European Arctic and discuss observed and projected impacts on biota and ecosystems.

2019

Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment – An update

Muir, Derek; Bossi, Rossana; Carlsson, Pernilla; Evans, Marlene; Silva, Amila De; Halsall, Crispin; Rauert, Cassandra; Herzke, Dorte; Hung, Hayley; Letcher, Robert; Rigét, Frank; Roos, Anna

Poly- and perfluoroalkyl substances (PFASs) are important environmental contaminants globally and in the early 2000s they were shown to be ubiquitous contaminants in Arctic wildlife. Previous reviews by Butt et al. and Letcher et al. have covered studies on levels and trends of PFASs in the Arctic that were available to 2009. The purpose of this review is to focus on more recent work, generally published between 2009 and 2018, with emphasis on PFASs of emerging concern such as perfluoroalkyl carboxylates (PFCAs) and short-chain perfluoroalkyl sulfonates (PFSAs) and their precursors. Atmospheric measurements over the period 2006–2014 have shown that fluorotelomer alcohols (FTOHs) as well as perfluorobutanoic acid (PFBA) and perfluoroctanoic acid (PFOA) are the most prominent PFASs in the arctic atmosphere, all with increasing concentrations at Alert although PFOA concentrations declined at the Zeppelin Station (Svalbard). Results from ice cores show generally increasing deposition of PFCAs on the Devon Ice cap in the Canadian arctic while declining fluxes were found in a glacier on Svalbard. An extensive dataset exists for long-term trends of long-chain PFCAs that have been reported in Arctic biota with some datasets including archived samples from the 1970s and 1980s. Trends in PFCAs over time vary among the same species across the North American Arctic, East and West Greenland, and Svalbard. Most long term time series show a decline from higher concentrations in the early 2000s. However there have been recent (post 2010) increasing trends of PFCAs in ringed seals in the Canadian Arctic, East Greenland polar bears and in arctic foxes in Svalbard. Annual biological sampling is helping to determine these relatively short term changes. Rising levels of some PFCAs have been explained by continued emissions of long-chain PFCAs and/or their precursors and inflows to the Arctic Ocean, especially from the North Atlantic. While the effectiveness of biological sampling for temporal trends in long-chain PFCAs and PFSAs has been demonstrated, this does not apply to the C4–C8–PFCAs, perfluorobutane sulfonamide (FBSA), or perfluorobutane sulfonate (PFBS) which are generally present at low concentrations in biota. In addition to air sampling, sampling abiotic media such as glacial cores, and annual sampling of lake waters and seawater would appear to be the best approaches for investigating trends in the less bioaccumulative PFASs.

2019

PMF based source apportionment of aethalometer data

Platt, Stephen Matthew; Yttri, Karl Espen; Aas, Wenche

2019

Publikasjon
År
Kategori