Fant 9887 publikasjoner. Viser side 322 av 396:
2020
Social-Environmental Analysis for the Management of Coastal Lagoons in North Africa
This study provides an overview of 11 lagoons in North Africa, from the Atlantic to the Eastern Mediterranean. Lagoons are complex, transitional, coastal zones providing valuable ecosystem services that contribute to the welfare of the human population. The main economic sectors in the lagoons included fishing, shellfish harvesting, and salt and sand extraction, as well as maritime transport. Economic sectors in the areas around the lagoons and in the watershed included agriculture, tourism, recreation, industrial, and urban development. Changes were also identified in land use from reclamation, changes in hydrology, changes in sedimentology from damming, inlet modifications, and coastal engineering. The human activities in and around the lagoons exert multiple pressures on these ecosystems and result in changes in the environment, affecting salinity, dissolved oxygen, and erosion; changes in the ecology, such as loss of biodiversity; and changes in the delivery of valuable ecosystem services. Loss of ecosystem services such as coastal protection and seafood affect human populations that live around the lagoons and depend on them for their livelihood. Adaptive management frameworks for social–ecological systems provide options that support decision makers with science-based knowledge to deliver sustainable development for ecosystems. The framework used to support the decision makers for environmental management of these 11 lagoons is Drivers–Activities–Pressures–State Change–Impact (on Welfare)–Responses (as Measures).
Frontiers Media S.A.
2020
Costs and benefits of implementing an Environmental Speed Limit in a Nordic city
We present a comprehensive study on the impacts and associated changes in costs resulting from the implementation of Environmental Speed Limits (ESLs), as a measure to reduce PM10 and associated health effects. We present detailed modelled emissions (i.e., CO2, NOx, PM2.5 and PM10), concentration levels (i.e., PM2.5 and PM10) and population exposure to PM2.5 and PM10 under three scenarios of ESL implementation for the Metropolitan Area of Oslo. We find that whilst emissions of NOx and CO2 do not seem to show significant changes with ESL implementation, PM10 emissions are reduced by 6–12% and annual concentration levels are reduced up to 8%, with a subsequent reduction in population exposure. The modelled data is used to carry out a detailed analysis to quantify the changes in private and social costs for the roads in Oslo where ESL are implemented today. This involves assessments related to human health, climate, fuel consumption, time losses and the incidence of traffic accidents. For a scenario using actual speed data from ESL implementation, our study shows a net benefit associated with the implementation of ESLs, whilst for a theoretical scenario with strict speed limit compliance we find a net increase in costs. This is largely due to variation in costs due to time losses between the scenarios, although uncertainties are high.
Elsevier
2020
2020
2020
2020
2020
2020
Kartlegging av NO2-konsentrasjoner i luft ved E16 Arna – Vågsbotn ble utført av NILU på oppdrag fra Statens vegvesen.
Målingene ble utført med passive prøvetakere ved 10 steder i området Gaupås-Kalsås-Blinde. Prosjektet ble gjennomført
vinteren 2020 (28. januar – 24. mars) i et område som er utsatt for inversjonsforhold i vintermånedene.
Vinteren 2019-2020 viste seg til å bli en mild vinter, inversjonsforhold ble ikke registrert. NO2-konsentrasjonen var høyest den første uken målingene pågikk og ble gradvis lavere i påfølgende uker. De siste 2 ukene var påvirket av mindre trafikk som en følge av pandemitiltak. Middelkonsentrasjonen ved det mest forurensede målestedet over hele måleperioden var 22,9 μg/m3. Sammenligning av resultatene fra måleområdet med observasjoner fra målestasjoner i Bergen viste at NO2-konsentrasjonen rett ved E16 var på samme nivå som ved veinære stasjoner i Bergen.
NILU
2020
Equinor Mongstad. Spredningsberegninger av utslipp til luft.
NILU har vurdert spredning av utslipp til luft fra Mongstad raffineri. Bakgrunnen er krav fra Miljødirektoratet i forbindelse med ny virksomhetstillatelse. Fokus i studien er på NOx, SOx og støv/partikler. Timemiddelkonsentrasjoner er beregnet ved hjelp av modellen CONCX. Regionale beregninger av konsentrasjoner og avsetning er utført med WRF-EMEP modellsystem. CONCX-beregningene viser at maksimalt beregnet timemiddel er langt lavere enn norske grenseverdier. WRF-EMEP-beregningene viser lave maksimumsverdier av NOx/NO2, SO2 og svevestøv/PM10 i nærområdet til Mongstad raffineri. Alle beregnede maksimumsverdier er lavere enn norske grenseverdier. Av utslippene fra Mongstad avsettes 12 % av nitrogen, 17 % av svovel og 18 % av PM10 innenfor det innerste gridet (105 x 105 km2). Som et tillegg er det gjort vurderinger av de prioriterte stoffene bly, kvikksølv, krom, PCB7, kadmium og arsen. Bidraget fra Mongstad raffineri er lite.
NILU
2020
2020
Atmospheric turbulence and in particular its effect on tracer dispersion may be measured by cameras sensitive to the absorption of ultraviolet (UV) sunlight by sulfur dioxide (SO2), a gas that can be considered a passive tracer over short transport distances. We present a method to simulate UV camera measurements of SO2 with a 3D Monte Carlo radiative transfer model which takes input from a large eddy simulation (LES) of a SO2 plume released from a point source. From the simulated images the apparent absorbance and various plume density statistics (centre-line position, meandering, absolute and relative dispersion, and skewness) were calculated. These were compared with corresponding quantities obtained directly from the LES. Mean differences of centre-line position, absolute and relative dispersions, and skewness between the simulated images and the LES were generally found to be smaller than or about the voxel resolution of the LES. Furthermore, sensitivity studies were made to quantify how changes in solar azimuth and zenith angles, aerosol loading (background and in plume), and surface albedo impact the UV camera image plume statistics. Changing the values of these parameters within realistic limits has negligible effects on the centre-line position, meandering, absolute and relative dispersions, and skewness of the SO2 plume. Thus, we demonstrate that UV camera images of SO2 plumes may be used to derive plume statistics of relevance for the study of atmospheric turbulent dispersion.
2020
2020
2020
2020
Survey of emissions of volatile organic chemicals from handheld toys for children above 3 years
NILU has, on behalf of the Norwegian Environment Agency, performed a screening study to identify volatile organic chemicals (VOCs) emitted from handheld toys for children. The goal was to identify individual VOCs emitted from toys at room temperature and to evaluate what impact the toys may have on the composition and concentrations of VOCs in indoor air. 12-30 individual VOCs were identified in each toy and 65-143 individual VOCs were detected with a concentration higher than 1 µg/m3. VOCs emitted at high concentrations and/or with hazardous properties were cyclohexanone, aromatic VOCs (xylenes, toluene, ethylbenzene), cyclic siloxanes and 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB). A regulated hydrochlorofluorocarbon (HCFC-141 b) was also detected from 5 toys. The toys with high concentrations of cyclohexanone and cyclic siloxanes affected the composition and concentrations of VOCs in indoor air.
NILU
2020
Grenseområdene Norge-Russland. Luft- og nedbørkvalitet, årsrapport 2019.
Smelteverkene i nordvest-Russland slipper ut store mengder svoveldioksid (SO2) og tungmetaller. Utslippene påvirker luft- og nedbørkvalitet i grenseområdene. Miljøovervåkingen viser at grenseverdier for SO2 er overholdt i kalenderåret 2019, samt for vinter 2018/19. I januar 2019 var det to episoder med høye konsentrasjoner av SO2 på Svanvik. 25. januar ble det sendt varsel til befolkningen i området. Målsettingsverdier for Ni og As er overholdt.
NILU
2020
Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere
Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the upper stratosphere. The HCl molecule is observed to obtain long-term quantitative estimations of the total budget of the stratospheric chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from space. The HCl vertical profile from the upper troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparison with other measurements and via theoretical error analysis. We used the SMILES level-2 research product version 3.0.0. The period of the SMILES HCl observation was from 12 October 2009 to 21 April 2010, and the latitude coverage was 40∘ S–65∘ N. The average HCl vertical profile showed an increase with altitude up to the stratopause (∼ 45 km), approximately constant values between the stratopause and the upper mesosphere (∼ 80 km), and a decrease from the mesopause to the lower thermosphere (∼ 100 km). This behavior was observed in all latitude regions and reproduced by the Whole Atmosphere Community Climate Model in the specified dynamics configuration (SD-WACCM). We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from Microwave Limb Sounder (MLS) on the Aura satellite, as well as from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT and the TErahertz and submillimeter LImb Sounder (TELIS) (balloon borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES agreed well with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km (within 10 % between 30 and 40 km; there is a larger discrepancy below 30 km), respectively. The SMILES HCl concentration was smaller than those of MLS and ACE-FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv (12 %–15 %) at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The Jacobian for the temperature explains the negative bias of the SMILES HCl concentrations at 50–60 km.
2020
This paper describes the Eulerian urban dispersion model EPISODE. EPISODE was developed to address a need for an urban air quality model in support of policy, planning, and air quality management in the Nordic, specifically Norwegian, setting. It can be used for the calculation of a variety of airborne pollutant concentrations, but we focus here on the implementation and application of the model for NO2 pollution. EPISODE consists of an Eulerian 3D grid model with embedded sub-grid dispersion models (e.g. a Gaussian plume model) for dispersion of pollution from line (i.e. roads) and point sources (e.g. chimney stacks). It considers the atmospheric processes advection, diffusion, and an NO2 photochemistry represented using the photostationary steady-state approximation for NO2. EPISODE calculates hourly air concentrations representative of the grids and at receptor points. The latter allow EPISODE to estimate concentrations representative of the levels experienced by the population and to estimate their exposure. This methodological framework makes it suitable for simulating NO2 concentrations at fine-scale resolution (<100 m) in Nordic environments. The model can be run in an offline nested mode using output concentrations from a global or regional chemical transport model and forced by meteorology from an external numerical weather prediction model; it also can be driven by meteorological observations. We give a full description of the overall model function and its individual components. We then present a case study for six Norwegian cities whereby we simulate NO2 pollution for the entire year of 2015. The model is evaluated against in situ observations for the entire year and for specific episodes of enhanced pollution during winter. We evaluate the model performance using the FAIRMODE DELTA Tool that utilises traditional statistical metrics, e.g. root mean square error (RMSE), Pearson correlation R, and bias, along with some specialised tests for air quality model evaluation. We find that EPISODE attains the DELTA Tool model quality objective in all of the stations we evaluate against. Further, the other statistical evaluations show adequate model performance but that the model scores greatly improved correlations during winter and autumn compared to the summer. We attribute this to the use of the photostationary steady-state scheme for NO2, which should perform best in the absence of local ozone photochemical production. Oslo does not comply with the NO2 annual limit set in the 2008/50/EC directive (AQD). NO2 pollution episodes with the highest NO2 concentrations, which lead to the occurrence of exceedances of the AQD hourly limit for NO2, occur primarily in the winter and autumn in Oslo, so this strongly supports the use of EPISODE for application to these wintertime events. Overall, we conclude that the model is suitable for an assessment of annual mean NO2 concentrations and also for the study of hourly NO2 concentrations in the Nordic winter and autumn environment. Further, in this work we conclude that it is suitable for a range of policy applications specific to NO2 that include pollution episode analysis, evaluation of seasonal statistics, policy and planning support, and air quality management. Lastly, we identify a series of model developments specifically designed to address the limitations of the current model assumptions. Part 2 of this two-part paper discusses the CityChem extension to EPISODE, which includes a number of implementations such as a more comprehensive photochemical scheme suitable for describing more chemical species and a more diverse range of photochemical environments, as well as a more advanced treatment of the sub-grid dispersion.
2020