Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10084 publikasjoner. Viser side 40 av 404:

Publikasjon  
År  
Kategori

Sysav Malmö - CCS Waste-to-Energy. A Worst Case / Likely Case study of amines, nitramines and nitrosamines.

Berglen, Tore Flatlandsmo; Tønnesen, Dag; Markelj, Miha; Solberg, Sverre; Svendby, Tove Marit

NILU

2023

Rising carbon inequality and its driving factors from 2005 to 2015

Zheng, Heran; Wood, Richard John; Moran, Daniel Dean; Feng, Kuishuang; Tisserant, Alexandre Fabien Regis; Jiang, Meng; Hertwich, Edgar

Carbon inequality is the gap in carbon footprints between the rich and the poor, reflecting an uneven distribution of wealth and mitigation responsibility. Whilst much is known about the level of inequality surrounding responsibility for greenhouse gas (GHG) emissions, little is known about the evolution in carbon inequality and how the carbon footprints of socio-economic groups have developed over time. Inequality can be reduced either by improving the living standards of the poor or by reducing the overconsumption of the rich, but the choice has very different implications for climate change mitigation. Here, we investigate the carbon footprints of income quintile groups for major 43 economies from 2005 to 2015. We find that most developed economies had declining carbon footprints but expanding carbon inequality, whereas most developing economies had rising footprints but divergent trends in carbon inequality. The top income group in developing economies grew fastest, with its carbon footprint surpassing the top group in developed economies in 2014. Developments are driven by a reduction in GHG intensity in all regions, which is partly offset by income growth in developed countries but more than offset by the rapid growth in selected emerging economies. The top income group in developed economies has achieved the least progress in climate change mitigation, in terms of decline rate, showing resistance of the rich. It shows mitigation efforts could raise carbon inequality. We highlight the necessity of raising the living standard of the poor and consistent mitigation effort is the core of achieving two targets.

2023

Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual Report 2022.

Svendby, Tove Marit; Fjæraa, Ann Mari; Nilsen, Anne-Cathrine; Schulze, Dorothea; Johnsen, Bjørn

This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV-measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2022 was characterized by annual average total ozone values slightly below “normal”.

NILU

2023

Advanced biological models in vitro for hazard assessment of nanomaterials on human health

Camassa, Laura Maria Azzurra; Sadeghiankaffash, Hamed; Zheng, Congying; Ervik, Torunn Kringlen; Anmarkrud, Kristine Haugen; Elje, Elisabeth; Shaposhnikov, Sergey; Rundén-Pran, Elise; Zienolddiny-Narui, Shan

2023

Monitoring of environmental contaminants in freshwater food webs (MILFERSK) 2022

Jartun, Morten; Økelsrud, Asle; Bæk, Kine; Rundberget, Thomas; Øxnevad, Sigurd; Ruus, Anders; Grung, Merete; Enge, Ellen Katrin; Hanssen, Linda; Harju, Mikael; Johansen, Ingar

Samples of a benthic food chain in Lake Mjøsa have been collected, and the concentrations of emerging contaminants such as
Siloxanes, PFAS, UV-compounds, Quaternary Ammonium Compounds, Musks, Benzothiazoles and Chlorinated paraffins in
addition to legacy contaminants such as Mercury, other Metals and PBDEs have been determined. For comparison, samples of
the top predator brown trout have been collected and analysed from Lake Femunden, a rural counterpart to the more urban
Lake Mjøsa.

Norsk institutt for vannforskning (NIVA)

2023

A high-resolution dynamic probabilistic material flow analysis of seven plastic polymers; A case study of Norway

Abbasi, Golnoush; Hauser, Marina Jennifer; Baldé, Cornelis Peter; Bouman, Evert Alwin

Plastic pollution has long been identified as one of the biggest challenges of the 21st century. To tackle this problem, governments are setting stringent recycling targets to keep plastics in a closed loop. Yet, knowledge of the stocks and flows of plastic has not been well integrated into policies. This study presents a dynamic probabilistic economy-wide material flow analysis (MFA) of seven plastic polymers (HDPE, LDPE, PP, PS, PVC, EPS, and PET) in Norway from 2000 to 2050. A total of 40 individual product categories aggregated into nine industrial sectors were examined. An estimated 620 ± 23 kt or 114 kg/capita of these seven plastic polymers was put on the Norwegian market in 2020. Packaging products contributed to the largest share of plastic put on the market (∼40%). The accumulated in-use stock in 2020 was about 3400 ± 56 kt with ∼60% remaining in buildings and construction sector. In 2020, about 460 ± 22 kt of plastic waste was generated in Norway, with half originating from packaging. Although ∼50% of all plastic waste is collected separately from the waste stream, only around 25% is sorted for recycling. Overall, ∼50% of plastic waste is incinerated, ∼15% exported, and ∼10% landfilled. Under a business-as-usual scenario, the plastic put on the market, in-use stock, and waste generation will increase by 65%, 140%, and 90%, respectively by 2050. The outcomes of this work can be used as a guideline for other countries to establish the stocks and flows of plastic polymers from various industrial sectors which is needed for the implementation of necessary regulatory actions and circular strategies. The systematic classification of products suitable for recycling or be made of recyclate will facilitate the safe and sustainable recycling of plastic waste into new products, cap production, lower consumption, and prevent waste generation.

2023

Low-cost sensors and Machine Learning aid in identifying environmental factors affecting particulate matter emitted by household heating

Hassani, Amirhossein; Bykuć, Sebastian; Schneider, Philipp; Zawadzki, Paweł; Chaja, Patryk; Castell, Nuria

Poland continues to rely heavily on coal and fossil fuels for household heating, despite efforts to reduce Particulate Matter (PM) levels. The availability of reliable air quality data is essential for policymakers, environmentalists, and citizens to advocate for cleaner energy sources. However, Polish air quality monitoring is challenging due to the limited coverage of reference stations and outdated equipment. Here, we report the results of a study on the spatio-temporal variability of Particulate Matter in Legionowo, Poland, using residents’ network of low-cost sensors. Along with identifying the hotspots of household-emitted PM, (1) we propose a data quality assurance scheme for PM sensors, (2) suggest an approach for estimating the Relative Humidity-induced uncertainty in the sensors without co-location with reference instruments, and (3) develop an interpretable Machine Learning (ML) model, a Generalized Additive Model (RMSE = 6.16 μg m−3, and R2 = 0.88), for unveiling the underlying relations between PM2.5 levels and other environmental parameters. The results in Legionowo suggest that as air temperature and wind speed increase by 1 °C and 1 km h−1, PM2.5 would respectively decrease by 0.26 μg m−3 and 0.14 μg m−3 while PM2.5 increases by 0.03 μg m−3 as RH increases by 1%.

2023

Impacts of a warming climate on concentrations of organochlorines in a fasting high arctic marine bird: Direct vs. indirect effects?

Bustnes, Jan Ove; Bårdsen, Bård-Jørgen; Moe, Børge; Herzke, Dorte; Ballesteros, Manuel; Fenstad, Anette; Borgå, Katrine; Krogseth, Ingjerd Sunde; Eulaers, Igor; Skogeng, Lovise Pedersen; Gabrielsen, Geir Wing; Hanssen, Sveinn Are

The present study examined how climate changes may impact the concentrations of lipophilic organochlorines (OCs) in the blood of fasting High Arctic common eiders (Somateria mollissima) during incubation. Polychlorinated biphenyls (PCBs), 1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p′-DDE), hexachlorobenzene (HCB) and four chlordane compounds (oxychlordane, trans-chlordane and trans- and cis-nonachlor) were measured in females at chick hatching (n = 223) over 11 years (2007–2017). Firstly, median HCB and p,p′-DDE concentrations increased ~75 % over the study period, whereas median chlordane concentrations doubled (except for oxychlordane). PCB concentrations, in contrast, remained stable over the study period. Secondly, both body mass and clutch size were negatively associated with OC levels, suggesting that females with high lipid metabolism redistributed more OCs from adipose tissue, and that egg production is an important elimination route for OCs. Thirdly, the direct climate effects were assessed using the mean effective temperature (ET: air temperature and wind speed) during incubation, and we hypothesized that a low ET would increase redistribution of OCs. Contrary to expectation, the ET was positively correlated to most OCs, suggesting that a warmer climate may lead to higher OCs levels, and that the impact of ET may not be direct. Finally, potential indirect impacts were examined using the Arctic Oscillation (AO) in the three preceding winters (AOwinter 1–3) as a proxy for potential long-range transport of OCs, and for local spring climate conditions. In addition, we used chlorophyll a (Chla) as a measure of spring primary production. There were negative associations between AOwinter 1 and HCB, trans-chlordane and trans-nonachlor, whereas oxychlordane and cis-chlordane were negatively associated with Chla. This suggests that potential indirect climate effects on eiders were manifested through the food chain and not through increased long-range transport, although these relationships were relatively weak.

2023

Image-Text Connection: Exploring the Expansion of the Diversity Within Joint Feature Space Similarity Score

Mohammadi, Mahsa; Eftekhari, Mahdi; Hassani, Amirhossein

Cross-modal representation learning aims to learn a shared representation space where data from multiple modalities can be effectively compared, fused, and understood. This paper investigates the role of increased diversity in the similarity score matrix in enhancing the performance of the CLIP (Contrastive Language-Image Pretraining), a multi-modal learning model that establishes a connection between images and text within a joint embedding space. Two transforming approaches, sine and sigmoid (including two versions), are incorporated into the CLIP model to amplify larger values and diminish smaller values within the similarity matrix (logits). Hardware limitations are addressed using a more compact text encoder (DistilBERT) and a pre-trained ResNet50 image encoder. The proposed adaptations are evaluated on various benchmarks, including image classification and image/text retrieval tasks, using 10 benchmark datasets such as Food101, Flickr30k, and COCO. The performance of the adapted models is compared to the base CLIP model using Accuracy, mean per class, and Recall@k metrics. The results demonstrate improvements in Accuracy (up to 5.32% enhancement for the PatchCamelyon dataset), mean per class (up to 14.48% enhancement for the FGVCAircraft dataset), and retrieval precision (with an increase of up to 45.20% in Recall@1 for the COCO dataset), compared to the baseline algorithm (CLIP).

2023

Detection of Aerosol Layer Height and Optical Depth By Twilight VIS/NIR Radiometry

Mukherjee, Lipi; Wu, Dong Liang; Mayer, Bernhard C.; Kylling, Arve

2023

Global Nitrous Oxide Budget 1980-2020

Tian, Hanqin; Pan, Naiqing; Thompson, Rona Louise; Canadell, Josep G.; Suntharalingam, Parvadha; Regnier, Pierre; Davidson, Eric A.; Prather, Michael J.; Ciais, Philippe; Muntean, Marilena; Pan, Shufen; Winiwarter, Wilfried; Zaehle, Sönke; Zhou, Feng; Jackson, Robert B.

2023

Long-term Meteorology-Adjusted and Unadjusted Trends of PM2.5 Using the AirGAM Model Over Delhi, 2007–2022

Dang, Chetna; Dhaka, S K; Walker, Sam-Erik; Longiany, Gagandeep; Rawat, Wikas

2023

Smoke continues to blanket NYC, soon into Norway

Tørseth, Kjetil (intervjuobjekt)

2023

Genotoxic effects of occupational exposure to glass fibres - A human biomonitoring study.

Ceppi, Marcello; Smolkova, Bozena; Staruchova, Marta; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Collins, Andrew Richard; Kocan, Anton; Dzupinkova, Zuzana; Horska, Alexandra; Buocikova, Verona; Tulinska, Jana; Liskova, Aurelia; Mikusova, Miroslava Lehotska; Krivosikova, Zora; Wsolova, Ladislava; Kuba, Daniel; Rundén-Pran, Elise; Yamani, Naouale El; Longhin, Eleonora Marta; Halasova, Erika; Kyrtopoulos, Soterios; Bonassi, Stefano; Dusinska, Maria

As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated.

The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay).

Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively.

Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.

2023

Analysis of Polycyclic Aromatic Hydrocarbon Emissions from a Pilot Scale Silicon Process with Flue Gas Recirculation

Arnesen, Kamilla; Vachaparambil, Kurian Jomy; Andersen, Vegar; Panjwani, Balram; Jakovljevic, Katarina; Enge, Ellen Katrin; Gaertner, Heiko; Aarhaug, Thor Anders; Einarsrud, Kristian Etienne; Tranell, Maria Gabriella

Flue gas recirculation (FGR) is a method used in several industries to control emissions and process conditions, such as NOx reduction and temperature levels, and increase the CO2 concentration in the off-gas, to be better suited for methods of carbon capture. In this study, the influence of FGR, varying levels of flue gas flow and oxygen concentration on the emissions of polycyclic aromatic hydrocarbons (PAHs) was investigated during Si alloy production. In addition, computational fluid dynamics (CFD) modeling was performed using OpenFOAM for combustion of C2H2 and H2 with varying O2 levels to simulate FGR and to gain better insight into the impact of furnace operations on the PAH evolution. Experimental results show that increasing FGR (0–82.5%) and decreasing levels of oxygen (20.7–13.3 vol %) increase the PAH-42 concentration from 14.1 to 559.7 μg/Nm3. This is supported by the simulations, where increased formation of all PAHs species was observed at high levels of FGR, especially for the lighter aromatic species (like benzene and naphthalene), due to the lower availability of oxygen and the reduction in temperature. Residence time was identified as another key parameter to promote complete combustion of PAHs. Benzene oxidation can be prevented with temperatures lower than 1000 K and residence times smaller than 1 s, while complete oxidation is found at temperatures of around 1500 K.

2023

Greenhouse gas observations in ICOS Norway and ReGAME

Platt, Stephen Matthew; Hermansen, Ove; Lunder, Chris Rene; Svendby, Tove Marit; Zwaaftink, Christine Groot; Thompson, Rona Louise; Pisso, Ignacio; Krishnankutty, Nalini

2023

Source apportionment of black carbon in Oslo (Norway) and Vinca (Serbia)

Platt, Stephen Matthew; Yttri, Karl Espen; Hak, Claudia; Jovasevic-Stojanovic, Milena

2023

Global fields of the methane isotopic ratio constrained with observations

Zwaaftink, Christine Groot; Thompson, Rona Louise; Tsuruta, Aki; Röckmann, Thomas; Levin, Ingeborg; Platt, Stephen Matthew

2023

European air quality maps for 2020. PM10, PM2.5, Ozone, NO2, NOx and Benzo(a)pyrene spatial estimates and their uncertainties.

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Markova, Jana; Schneider, Philipp; Kurfürst, Pavel; Tognet, Frédéric; Schovánková, Jana; Vlcek, Ondrej; Damaskova, Dasa

The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10), NO2 (annual average) and benzo(a)pyrene (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2020. The report contains also Phytotoxic ozone dose (POD) for wheat, potato and tomato maps and NOx annual average map for 2020. The benzo(a)pyrene map is presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005–2020 are summarized. The analysis for 2020 is based on the interpolation of the annual statistics of the 2020 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database, complemented, when needed, with measurements from additional sources. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2020 in comparison to the five-year average 2015-2019 using the difference maps.

ETC/HE

2023

Initial comparison of recent years satellite and CAMS aerosol data over Svalbard

Stebel, Kerstin; Hansen, Georg H.; Kylling, Arve; Schneider, Philipp

2023

Mobile monitoring of urban ultrafine particles in Novi Sad, Serbia

Davidović, Miloš D.; Kleut, Duška N.; Vito, Saverio De; Bartonova, Alena; Jovasevic-Stojanovic, Milena

2023

Interim European air quality maps for 2021. PM10, NO2 and ozone spatial estimates based on non-validated UTD data.

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Schneider, Philipp; Damaskova, Dasa

This report presents European interim air quality maps for 2021, which are based on the non-validated up-to-date (UTD) measurement data and the CAMS Ensemble Forecast modelling results, together with other supplementary data. It contains maps of PM10 and NO2 annual averages and ozone indicator SOMO35.

ETC/HE

2023

Long-term Comparison of NOAA and AGAGE Non-CO2 Trace Gas Observations at Common Sites

Hall, Brad D.; Krummel, Paul B.; Muhle, Jens; Weiss, Ray F.; Montzka, Stephen A.; Vimont, Isaac J.; Dutton, Geoffrey S.; Harth, Christina M.; O'Doherty, Simon; Young, Dickon; nance, Jon David; Loh, Zoe M; Lan, Xin; Langenfelds, Ray; Salameh, Peter K.; Prinn, Ronald G.; Mitrevski, Blagoj; Lunder, Chris Rene

2023

Publikasjon
År
Kategori