Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9764 publikasjoner. Viser side 62 av 391:

Publikasjon  
År  
Kategori

Ny forskning viser sammenheng mellom svevestøv og astma hos barn – nivået måles ikke

Hak, Claudia; Øvrevik, Johan; Låg, Marit (intervjuobjekter); Waaler, Ingrid Emilie (journalist)

2021

Røyk fra skogbrannene i USA kan sees over Norge

Fiebig, Markus (intervjuobjekt); Ulvin, Philippe Bedos (journalist)

2021

Dimethyl Sulfide-Induced Increase in Cloud Condensation Nuclei in the Arctic Atmosphere

Park, Ki-Tae; Yoon, Young Jun; Lee, Kitack; Tunved, Peter; Krejci, Radovan; Ström, Johan; Jang, Eunho; Kang, Hyo Jin; Jang, Seyhun; Park, Jiyeon; Lee, Bang Young; Traversi, Rita; Becagli, Silvia; Hermansen, Ove

American Geophysical Union (AGU)

2021

En brennende «skrekkfilm» – som også kan komme til Norge

Evangeliou, Nikolaos (intervjuobjekt); Thorenfeldt, Gunnar; Halvorsen, Bjørn Egil (journalister)

2021

Monitoring of long-range transported air pollutants in Norway. Annual Report 2020.

Aas, Wenche; Eckhardt, Sabine; Fiebig, Markus; Platt, Stephen Matthew; Solberg, Sverre; Yttri, Karl Espen; Zwaaftink, Christine Groot

Denne rapporten omhandler resultater fra overvåkningsprogrammet for langtransportert forurenset luft og nedbør og atmosfæriske tilførsler i 2020. Rapporten presenterer målinger av uorganiske hovedkomponentene i luft og nedbør, partikulært karbonholdig materiale, partikkelmasse og bakkenært ozon. Forurensningsnivået i 2020 var generelt lavt noe som delvis kan forklares med spesielle værforhold de første månedene med hovedsakelig ren, marin luft fra vest. De omfattende restriksjonene på menneskelig aktivitet i forbindelse med pandemien i Europa, har trolig også bidratt til lavere nivåer av luftforurensninger på de norske bakgrunnsstasjonene. I 2020 ble det observert en uvanlig omfattende episode med høye konsentrasjoner av luftforurensing på alle stasjoner.

NILU

2021

Introducing a nested multimedia fate and transport model for organic contaminants (NEM)

Breivik, Knut; Eckhardt, Sabine; McLachlan, Michael S; Wania, Frank

Some organic contaminants, including the persistent organic pollutants (POPs), have achieved global distribution through long range atmospheric transport (LRAT). Regulatory efforts, monitoring programs and modelling studies address the LRAT of POPs on national, continental (e.g. Europe) and/or global scales. Whereas national and continental-scale models require estimates of the input of globally dispersed chemicals from outside of the model domain, existing global-scale models either have relatively coarse spatial resolution or are so computationally demanding that it limits their usefulness. Here we introduce the Nested Exposure Model (NEM), which is a multimedia fate and transport model that is global in scale yet can achieve high spatial resolution of a user-defined target region without huge computational demands. Evaluating NEM by comparing model predictions for PCB-153 in air with measurements at nine long-term monitoring sites of the European Monitoring and Evaluation Programme (EMEP) reveals that nested simulations at a resolution of 1° × 1° yield results within a factor of 1.5 of observations at sites in northern Europe. At this resolution, the model attributes more than 90% of the atmospheric burden within any of the grid cells containing an EMEP site to advective atmospheric transport from elsewhere. Deteriorating model performance with decreasing resolution (15° × 15°, 5° × 5° and 1° × 1°), manifested by overestimation of concentrations across most of northern Europe by more than a factor of 3, illustrates the effect of numerical diffusion. Finally, we apply the model to demonstrate how the choice of spatial resolution affect predictions of atmospheric deposition to the Baltic Sea. While we envisage that NEM may be used for a wide range of applications in the future, further evaluation will be required to delineate the boundaries of applicability towards chemicals with divergent fate properties as well as in environmental media other than air.

Royal Society of Chemistry (RSC)

2021

Modeling study of the impact of SO2 volcanic passive emissions on the tropospheric sulfur budget

Lamotte, Claire; Guth, Jonathan; Marécal, Virginie; Cussac, Martin; Hamer, Paul David; Theys, Nicolas; Schneider, Philipp

Well constrained volcanic emissions inventories in chemistry transport models are necessary to study the impacts induced by these sources on the tropospheric sulfur composition and on sulfur species concentrations and depositions at the surface. In this paper, the changes induced by the update of the volcanic sulfur emissions inventory are studied using the global chemistry transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle). Unlike the previous inventory (Andres and Kasgnoc, 1998), the updated one (Carn et al., 2016, 2017) uses more accurate information and includes contributions from both passive degassing and eruptive emissions. Eruptions are provided as daily total amounts of sulfur dioxide (SO2) emitted by volcanoes in the Carn et al. (2016, 2017) inventories, and degassing emissions are provided as annual averages with the related mean annual uncertainties of those emissions by volcano. Information on plume altitudes is also available and has been used in the model. We chose to analyze the year 2013, for which only a negligible amount of eruptive volcanic SO2 emissions is reported, allowing us to focus the study on the impact of passive degassing emissions on the tropospheric sulfur budget. An evaluation against the Ozone Monitoring Instrument (OMI) SO2 total column and MODIS (Moderate-Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) observations shows the improvements of the model results with the updated inventory. Because the global volcanic SO2 flux changes from 13 Tg yr−1 in Andres and Kasgnoc (1998) to 23.6 Tg yr−1 in Carn et al. (2016, 2017), significant differences appear in the global sulfur budget, mainly in the free troposphere and in the tropics. Even though volcanic SO2 emissions represent 15 % of the total annual sulfur emissions, the volcanic contribution to the tropospheric sulfate aerosol burden is 25 %, which is due to the higher altitude of emissions from volcanoes. Moreover, a sensitivity study on passive degassing emissions, using the annual uncertainties of emissions per volcano, also confirmed the nonlinear link between tropospheric sulfur species content with respect to volcanic SO2 emissions. This study highlights the need for accurate estimates of volcanic sources in chemistry transport models in order to properly simulate tropospheric sulfur species.

2021

Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway

Vogt, Matthias; Schneider, Philipp; Castell, Nuria; Hamer, Paul David

The increased availability of commercially-available low-cost air quality sensors combined with increased interest in their use by citizen scientists, community groups, and professionals is resulting in rapid adoption, despite data quality concerns. We have characterized three out-the-box PM sensor systems under different environmental conditions, using field colocation against reference equipment. The sensor systems integrate Plantower 5003, Sensirion SPS30 and Alphasense OCP-N3 PM sensors. The first two use photometry as a measuring technique, while the third one is an optical particle counter. For the performance evaluation, we co-located 3 units of each manufacturer and compared the results against optical (FIDAS) and gravimetric (KFG) methods for a period of 7 weeks (28 August to 19 October 2020). During the period from 2nd and 5th October, unusually high PM concentrations were observed due to a long-range transport episode. The results show that the highest correlations between the sensor systems and the optical reference are observed for PM1, with coefficients of determination above 0.9, followed by PM2.5. All the sensor units struggle to correctly measure PM10, and the coefficients of determination vary between 0.45 and 0.64. This behavior is also corroborated when using the gravimetric method, where correlations are significantly higher for PM2.5 than for PM10, especially for the sensor systems based on photometry. During the long range transport event the performance of the photometric sensors was heavily affected, and PM10 was largely underestimated. The sensor systems evaluated in this study had good agreement with the reference instrumentation for PM1 and PM2.5; however, they struggled to correctly measure PM10. The sensors also showed a decrease in accuracy when the ambient size distribution was different from the one for which the manufacturer had calibrated the sensor, and during weather conditions with high relative humidity. When interpreting and communicating air quality data measured using low-cost sensor systems, it is important to consider such limitations in order not to risk misinterpretation of the resulting data.

MDPI

2021

Black Carbon Emission Reduction Due to COVID-19 Lockdown in China

Jia, Mengwei; Evangeliou, Nikolaos; Eckhardt, Sabine; Huang, Xin; Gao, Jian; Ding, Aijun; Stohl, Andreas

American Geophysical Union (AGU)

2021

Integrated water vapor during rain and rain-free conditions above the Swiss Plateau

Hocke, Klemens; Bernet, Leonie; Wang, Wenyue; Mätzler, Christian; Hervo, Maxime; Haefele, Alexander

Water vapor column density, or vertically-integrated water vapor (IWV), is monitored by ground-based microwave radiometers (MWR) and ground-based receivers of the Global Navigation Satellite System (GNSS). For rain periods, the retrieval of IWV from GNSS Zenith Wet Delay (ZWD) neglects the atmospheric propagation delay of the GNSS signal by rain droplets. Similarly, it is difficult for ground-based dual-frequency single-polarisation microwave radiometers to separate the microwave emission of water vapor and cloud droplets from the rather strong microwave emission of rain. For ground-based microwave radiometry at Bern (Switzerland), we take the approach that IWV during rain is derived from linearly interpolated opacities before and after the rain period. The intermittent rain periods often appear as spikes in the time series of integrated liquid water (ILW) and are indicated by ILW ≥ 0.4 mm. In the present study, we assume that IWV measurements from radiosondes are not affected by rain. We intercompare the climatologies of IWV(rain), IWV(no rain), and IWV(all) obtained by radiosonde, ground-based GNSS atmosphere sounding, ground-based MWR, and ECMWF reanalysis (ERA5) at Payerne and Bern in Switzerland. In all seasons, IWV(rain) is 3.75 to 5.94 mm greater than IWV(no rain). The mean IWV differences between GNSS and radiosonde at Payerne are less than 0.26 mm. The datasets at Payerne show a better agreement than the datasets at Bern. However, the MWR at Bern agrees with the radiosonde at Payerne within 0.41 mm for IWV(rain) and 0.02 mm for IWV(no rain). Using the GNSS and rain gauge measurements at Payerne, we find that IWV(rain) increases with increase of the precipitation rate during summer as well as during winter. IWV(rain) above the Swiss Plateau is quite well estimated by GNSS and MWR though the standard retrievals are limited or hampered during rain periods.

MDPI

2021

Oceanic long-range transport of organic additives present in plastic products: an overview

Andrade, Helena; Glüge, Juliane; Herzke, Dorte; Ashta, Narain Maharaj; Nayagar, Shwetha Manohar; Scheringer, Martin

Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8100–18,900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention.

Springer

2021

The influence of probe spacing and probe bias in a double Langmuir probe setup

Kjølerbakken, Kai Morgan; Miloch, Wojciech Jacek; Røed, Ketil

Multi-needle Langmuir probes are mounted on satellites and sounding rockets for high-frequency characterization of plasma in the ionosphere. Mounted on a spacecraft, the recorded probe current often differs from expected results. In this paper, we perform a numerical study using a particle in cell model to see how the spacing between the individual probes used in a multi-needle setup influences the measured current. We also study how the applied probe bias voltage can contribute to deviations. In our study, we use realistic electron temperatures and electron densities for the relevant part of the ionosphere. However, the results should be generally applicable and valid for other space environments as well as for laboratory Langmuir probe applications. From our study, we can see that when the distance is short, less than two Debye lengths, the current is highly affected, and we can see deviations of more than 60% compared to a single probe setup.

AIP Publishing (American Institute of Physics)

2021

Car Tires Contain a Cocktail of Chemicals: Their Characterization, Leaching and Bioavailability

Booth, Andy; Sørensen, Lisbet; Halsband-Lenk, Claudia; Herzke, Dorte

2021

Poly- and perfluoroalkyl substances (PFAS) as local contaminants on Svalbard (Norwegian Arctic): sources, pathways and consequences.

Kallenborn, Roland; Ali, Aasim Musa Mohamed; Langberg, Håkon Austad; Breedveld, Gijs D.; Hale, Sarah; Skaar, Jøran Solnes; Ahrens, Lutz

2021

Finding essentiality feasible: common questions and misinterpretations concerning the “essential-use” concept

Cousins, Ian T.; Dewitt, Jamie C.; Glüge, Juliane; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Miller, Mark; Ng, Carla A.; Patton, Sharyle; Scheringer, Martin; Trier, Xenia; Wang, Zhanyun

Royal Society of Chemistry (RSC)

2021

DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations

Niazi, Yasmeen; Thomsen, Hauke; Smolkova, Bozena; Vodickova, Ludmila; Vodenkova, Sona; Kroupa, Michal; Vymetalkova, Veronika; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Staruchova, Marta; Hoffmann, Per; Nöthen, Markus M.; Dusinska, Maria; Musak, Ludovit; Vodicka, Pavel; Hemminki, Kari; Försti, Asta

DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10–3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.

Frontiers Media S.A.

2021

How Atmospheric Chemistry and Transport Drive Surface Variability of N2O and CFC-11

Ruiz, Daniel J.; Prather, Michael J.; Strahan, Susan E.; Thompson, Rona Louise; Froidevaux, Lucien; Steenrod, Stephen D.

American Geophysical Union (AGU)

2021

Tomme flyplasser og færre flyturer har lite å si for klimaet

Platt, Stephen Matthew; Andrew, Robbie (intervjuobjekter); Grønning, Trygve (journalist)

2021

Maximizing output from non-target screening

Andreasen, Birgitta; van Bavel, Bert; Fishcher, Stellan; Haglund, Peter; Rostkowski, Pawel; Reid, Malcolm James; Samanipour, Saer; Schlabach, Martin; Veenaas, Cathrin; Dam, Maria

The purpose of this project is to dig deeper into the data material already generated in the Suspect screening in Nordic countries: Point sources in city areas (TemaNord: 2017:561) to further optimize the benefits of the major work that has already been done. Samples (effluent, sediment, and biota) from all of the Nordic countries were carefully selected, sampled and analysed by a consortium of some of the Nordic region’s most experienced scientific groups in analyses of emerging environmental contaminants. But where perhaps the full potential of the generated data is still to be realized. This project will try to further identify and describe the substances already detected, to be able to better understand what substances we in modern Nordic societies release into the sea via our wastewater.

Nordic Council of Ministers

2021

Nedstenging lite å si for utslipp

Platt, Stephen Matthew (intervjuobjekt); Grønning, Trygve (journalist)

2021

MercuNorth–monitoring mercury in pregnant women from the Arctic as a baseline to assess the effectiveness of the Minamata Convention

Adlard, Bryan; Lemire, Mélanie; Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Ólafsdóttir, Kristín; Odland, Jon Øyvind; Rautio, Arja; Myllynen, Päivi; Sandanger, Torkjel M; Dudarev, Alexey A.; Bergdahl, Ingvar A.; Wennberg, Maria; Berner, James; Ayotte, Pierre

Taylor & Francis

2021

Cyanobakterier og cyanotoksiner i norske drikkevannskilder. Vitenskapelig uttalelse fra faggruppen for forurensning, naturlige toksiner og medisinrester i Vitenskapskomiteen for mat og miljø

Samdal, Ingunn Anita; Ballot, Andreas ; Boahene, Nana Yaa; Eriksen, Gunnar Sundstøl; Flø, Daniel; Haande, Sigrid; Svendsen, Camilla; Amlund, Heidi; Beyer, Jonny; Brantsæter, Anne Lise; Bremer, Sara; Mariussen, Espen; Thomsen, Cathrine; Knutsen, Helle

2021

Grenseområdene Norge-Russland. Luft- og nedbørkvalitet 2020.

Berglen, Tore Flatlandsmo; Nilsen, Anne-Cathrine; Våler, Rita Larsen; Vadset, Marit; Uggerud, Hilde Thelle; Hak, Claudia; Andresen, Erik

The nickel smelters in northwest-Russia emitted large quantities of sulphur dioxide (SO2) and heavy metals. These emissions lead to enhanced concentrations of environmental pollutants in the border areas. The monitoring programme shows that air quality in the border areas was in compliance with Norwegian critical levels for SO2 for the calendar year 2020, as well as for seasonal mean for the winter 2019/20. The smelter in Nikel ceased operation on 23 December 2020. This will give less pollution in the border areas in the future. Target values for Ni, As and Cd were not exceeded.

NILU

2021

Publikasjon
År
Kategori