Fant 9850 publikasjoner. Viser side 109 av 394:
NILU’s Environmental Management Report 2017
One of NILU’s main goals is to study the impact of pollution and supply decision-makers with a sound scientific platform for choosing measures to reduce the negative impacts. Furthermore, it is very important for the institute to have control of the impact the institute’s own activities may have on the environment and to reduce negative impacts as far as possible.
NILU has for many years been working to improve the status of the environment and to reduce negative impacts. In order to take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard.
The chosen standard is ISO 14001:2004 (Environmental management systems—Requirements with guidance for use) and NILU achieved certification according to this standard in October 2010. This report summarizes the results of the system in 2017.
NILU
2018
2018
Coral Reef Socio-Ecological Systems Analysis & Restoration
Restoration strategies for coral reefs are usually focused on the recovery of bio-physical characteristics. They seldom include an evaluation of the recovery of the socio-ecological and ecosystem services features of coral reef systems. This paper proposes a conceptual framework to address both the socio-ecological system features of coral reefs with the implementation of restoration activity for degraded coral reefs. Such a framework can lead to better societal outcomes from restoration activities while restoring bio-physical, social and ecosystem service features of such systems. We first developed a Socio Ecological System Analysis Framework, which combines the Ostrom Framework for analyzing socio-ecological systems and the Kittinger et al. human dimensions framework of coral reefs socio-ecological systems. We then constructed a Restoration of Coral Reef Framework, based on the most used and recent available coral reef restoration literature. These two frameworks were combined to present a Socio-Ecological Systems & Restoration Coral Reef Framework. These three frameworks can be used as a guide for managers, researchers and decision makers to analyze the needs of coral reef restoration in a way that addresses both socio-economic and ecological objectives to analyze, design, implement and monitor reef restoration programs.
MDPI
2018
2018
2018
Spesifikasjoner for sensorsystemer til måling av luftkvalitet. Anbefalinger ved anskaffelse.
This report explains technical terms related to measuring performances, as well as providing recommendations and requirements in connection with preparation of tenders. The report goes through existing instrumentation for air quality measurement in Norway and current legislation on the subject. It mentions possible applications for new measurement technologies. An overview of metrological terms with explanations gives the reader basic knowledge necessary to interpret instrument specifications. The report identifies some important parameters related to the quality of sensor systems.
NILU
2018
2018
Air quality in Ny-Ålesund. Monitoring of local air quality 2016-2017.
The concentrations of the measured components are generally low and below national limit values for the protection of human health and critical levels for the protection of vegetation.
Wind from northern sectors gave the highest average concentrations of nitrogen oxides and sulphur dioxide, which indicates the power station and the harbour as possible sources. The measurement results for CO2 show an annual variation with higher concentrations in the winter and lower in summer. Measured concentrations of CO were most likely caused by local snowmobile traffic.
NILU
2018
Duration and decay of Arctic stratospheric vortex events in the ECMWF seasonal forecast model
John Wiley & Sons
2018
Assessment was performed of the air quality related risk to the conservation of cultural heritage objects in one urban and one rural indoor location in Romania, with expected different air quality related conservation challenges: the National military museum in Bucharest and the Tismana monastery in Gorj County. The work was performed within and subsequent to the EU-Memori project by applying Memori methodology, Memori®-EWO (Early warning organic) dosimeters and passive pollution badge samplers for acetic and formic acids. The measurements in the National military museum were performed in three rooms with different exposure situations, and inside protective enclosures in the rooms. The rooms had organic and inorganic objects on exhibition and in store. The observed risks were associated with photo-oxidizing impact probably due to traffic pollutants entering from outdoor, and/or light exposure and temperature. The risks were found to be moderate, generally comparable to typical European purpose built museum locations. The highest risk was observed in a more open exhibition room in the main museum building. It was indicated that some observable change might happen to sensitive pigments and paper within 3 years, and to lead, copper and sensitive glass within 30 years in this location. Risk for observable change to sensitive pigments, paper, lead and sensitive glass within 30 years, was indicated in the other locations. The lowest risk was observed in a warehouse. A reduction in photo-oxidizing risk was measured in two of the enclosures, but a slightly higher acidic impact was measured in all the three enclosures, as compared to the respective rooms. In the Tismana monastery, a high level of acetic plus formic acid was observed in the air in the storerooms for icons and textiles, and books. Damage risk within 3 years was indicated for lead objects and sensitive glass, and within 30 years for iron and varnish (Laropal A81, resin mastic and dammar). As organic acid attack increases significantly at higher air humidity (> ~ 60%), this would be especially important to avoid. Risk for photo-oxidizing damage to paper and sensitive pigments within 30 years was indicated.
BioMed Central (BMC)
2018
We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014.
Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration.
Using CEDS, we estimate a net RFari in 2014 relative to 1750 of −0.17 W m−2, significantly weaker than the IPCC AR5 2011–1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.
2018
A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean
Climate predictions for the rapidly changing Arctic are highly uncertain, largely due to a poor understanding of the processes driving cloud properties. In particular, cloud fraction (CF) and cloud phase (CP) have major impacts on energy budgets, but are poorly represented in most models, often because of uncertainties in aerosol–cloud interactions. Here, we use over 10 million satellite observations coupled with aerosol transport model simulations to quantify large-scale microphysical effects of aerosols on CF and CP over the Arctic Ocean during polar night, when direct and semi-direct aerosol effects are minimal. Combustion aerosols over sea ice are associated with very large (∼ 10Wm−2) differences in longwave cloud radiative effects at the sea ice surface. However, co-varying meteorological changes on factors such as CF likely explain the majority of this signal. For example, combustion aerosols explain at most 40% of the CF differences between the full dataset and the clean-condition subset, compared to between 57% and 91% of the differences that can be predicted by co-varying meteorology. After normalizing for meteorological regime, aerosol microphysical effects have small but significant impacts on CF, CP, and precipitation frequency on an Arctic-wide scale. These effects indicate that dominant aerosol–cloud microphysical mechanisms are related to the relative fraction of liquid-containing clouds, with implications for a warming Arctic.
2018
Curating scientific information in knowledge infrastructures
Interpreting observational data is a fundamental task in the sciences, specifically in earth and environmental science where observational data are increasingly acquired, curated, and published systematically by environmental research infrastructures. Typically subject to substantial processing, observational data are used by research communities, their research groups and individual scientists, who interpret such primary data for their meaning in the context of research investigations. The result of interpretation is information—meaningful secondary or derived data—about the observed environment. Research infrastructures and research communities are thus essential to evolving uninterpreted observational data to information. In digital form, the classical bearer of information are the commonly known “(elaborated) data products,” for instance maps. In such form, meaning is generally implicit e.g., in map colour coding, and thus largely inaccessible to machines. The systematic acquisition, curation, possible publishing and further processing of information gained in observational data interpretation—as machine readable data and their machine readable meaning—is not common practice among environmental research infrastructures. For a use case in aerosol science, we elucidate these problems and present a Jupyter based prototype infrastructure that exploits a machine learning approach to interpretation and could support a research community in interpreting observational data and, more importantly, in curating and further using resulting information about a studied natural phenomenon.
Ubiquity Press
2018
2018
2018
Assessing the Relocation Robustness of on Field Calibrations for Air Quality Monitoring Devices
Springer
2018
Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2017 - Annual report
The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory situated on Svalbard in Arctic Norway during the period 2001-2017, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2017.
NILU
2018
2018
Atmospheric measurements show an increase in CH4 from the 1980s to 1998 followed by a period of near‐zero growth until 2007. However, from 2007, CH4 has increased again. Understanding the variability in CH4 is critical for climate prediction and climate change mitigation. We examine the role of CH4 sources and the dominant CH4 sink, oxidation by the hydroxyl radical (OH), in atmospheric CH4 variability over the past three decades using observations of CH4, C2H6, and δ13CCH4 in an inversion. From 2006 to 2014, microbial and fossil fuel emissions increased by 36 ± 12 and 15 ± 8 Tg y−1, respectively. Emission increases were partially offset by a decrease in biomass burning of 3 ± 2 Tg y−1 and increase in soil oxidation of 5 ± 6 Tg y−1. A change in the atmospheric sink did not appear to be a significant factor in the recent growth of CH4.
American Geophysical Union (AGU)
2018
Recent Arctic ozone depletion: Is there an impact of climate change?
After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.
Elsevier
2018