Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9888 publikasjoner. Viser side 28 av 396:

Publikasjon  
År  
Kategori

Phthalate contamination in marine mammals off the Norwegian coast

Andvik, Clare; Bories, Pierre; Harju, Mikael; Borgå, Katrine; Jourdain, Eve; Karoliussen, Richard; Rikardsen, Audun; Routti, Heli; Blévin, Pierre

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.

Elsevier

2023

Local pollution in Svalbard - Whereabouts of anthropogenic particles in an Arctic fjord system

Philipp, Carolin; Collard, France; Husum, Katrine; Halsband, Claudia; Herzke, Dorte; Corami, Fabiana; Gabrielsen, Geir Wing; Hallanger, Ingeborg G.

2023

A portal supporting risk governance of nano- and advanced materials

Fransman, W.; Panagiotis, Isigonis; Afantitis, Antreas; Jensen, Keld Alstrup; Bouman, Evert Alwin; Drobne, D.; Pozuelo Rollón, B.

2023

RISKGONE - Science-based risk governance of nano-technology

Moschini, Elisa; Isigonis, Panagiotis; Bouman, Evert Alwin; Doak, Shareen H.; Longhin, Eleonora Marta; Lynch, Iseult; Malsch, Ineke; Serchi, Tommaso; Steinbach, Christoph; Gutleb, Arno; Dusinska, Maria

2023

Relative impacts of sea ice loss and atmospheric internal variability on winter Arctic to East Asian surface air temperature based on large-ensemble simulations with NorESM2

He, Shengping; Drange, Helge; Furevik, Tore; Wang, Huijun; Fan, Ke; Graff, Lise Seland; Orsolini, Yvan Joseph Georges Emile G.

2023

The Impact of Recent European Droughts and Heatwaves on Trace Gas Surface Fluxes: Insights from Land Surface Data Assimilation

Hamer, Paul David; Trimmel, Heidelinde; Calvet, Jean-Christophe; Bonan, Bertrand; Meurey, Catherine; Vallejo, Islen; Eckhardt, Sabine; Sousa Santos, Gabriela; Marécal, Virginie; Tarrasón, Leonor

2023

Spatiotemporal patterns of indoor and outdoor PM2.5 in Legionowo, Poland

Salamalikis, Vasileios; Hassani, Amirhossein; Schneider, Philipp

2023

Between man and technology: adressing IAQ in Norwegian schools

Bartonova, Alena; Fredriksen, Mirjam; Høiskar, Britt Ann Kåstad

2023

Deployment and evaluation of network of open low-cost air quality sensor systems

Dauge, Franck Rene; Schneider, Philipp; Vogt, Matthias; Haugen, Rolf; Hassani, Amirhossein; Castell, Nuria; Bartonova, Alena

2023

Level of agreement (variability) of PM10 and PM2.5 detected with equivalent v.s. low-cost monitors installed in four municipalities

Davidovic, Milos; Kleut, Duška N.; Bartonova, Alena; De Vito, Saverio; Ristovski, Zoran; Jovašević-Stojanović, Milena

2023

Effect of demand-controlled ventilation strategies on indoor air pollutants in a classroom: A Norwegian case study

Yang, Aileen; Andersen, Kamilla Heimar; Hak, Claudia; Mikoviny, Tomas; Wisthaler, Armin; Holøs, Sverre Bjørn

IOP Publishing

2023

Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"

Papale, Dario; Heiskanen, Jouni; Brümmer, Christian; Buchmann, Nina; Calfapietra, Carlo; Carrara, Arnaud; Chen, Huilin; Gielen, Bert; Gkritzalis, Thanos; Hammer, Samuel; Hartman, Susan; Herbst, Mathias; Janssens, Ivan A.; Jordan, Armin; Juurola, Eija; Karstens, Ute; Kasurinen, Ville; Kruijt, Bart; Lankreijer, Harry; Levin, Ingeborg; Linderson, Maj-Lena; Loustau, Denis; Merbold, Lutz; Myhre, Cathrine Lund; Pavelka, Marian; Pilegaard, Kim; Ramonet, Michel; Rebmann, Corinna; Rinne, Janne; Rivier, Leonard; Saltikoff, Elena; Sanders, Richard; Steinbacher, Martin; Steinhoff, Tobias; Watson, Andrew; Vermeulen, Alex T.; Vesala, Timo; Vitkova, Gabriela; Kutsch, Werner

American Meteorological Society (AMS)

2023

Retrieval of Aerosol Optical Properties via an All-Sky Imager and Machine Learning: Uncertainty in Direct Normal Irradiance Estimations

Logothetis, Stavros-Andreas; Giannaklis, Christos-Panagiotis; Salamalikis, Vasileios; Tzoumanikas, Panagiotis; Raptis, Panagiotis-Ioannis; Amiridis, Vassilis; Eleftheratos, Kostas; Kazantzidis, Andreas

Quality-assured aerosol optical properties (AOP) with high spatiotemporal resolution are vital for the accurate estimation of direct aerosol radiative forcing and solar irradiance under clear skies. In this study, the sky information from an all-sky imager (ASI) is used with machine learning (ML) synergy to estimate aerosol optical depth (AOD) and the Ångström Exponent (AE). The retrieved AODs (AE) revealed good accuracy, with a dispersion error lower than 0.07 (0.15). The retrieved ML AOPs are used to estimate the DNI by applying radiative transfer modeling. The estimated ML DNI calculations revealed adequate accuracy to reproduce reference measurements with relatively low uncertainties.

2023

PM2.5 Retrieval Using Aerosol Optical Depth, Meteorological Variables, and Artificial Intelligence

Logothetis, Stavros-Andreas; Kosmopoulos, Georgios; Salamalikis, Vasileios; Kazantzidis, Andreas

Particulate matter (PM) is one of the major air pollutants that has adverse impacts on human health. The aim of this study is to present an alternative approach for retrieving fine PM (particles with an aerodynamic diameter less than 2.5 μm, PM2.5) using artificial intelligence. Ground-based instruments, including a hand-held Microtops II sun photometer (for aerosol optical depth), a PurpleAir sensor (for PM2.5), and Rotronic sensors (for temperature and relative humidity), are used for the machine learning algorithm training. The retrieved PM2.5 reveals an adequate performance with an error of 0.08 μg m−3 and a Pearson correlation coefficient of 0.84.

2023

Impact of Aerosol Optical Properties, Precipitable Water, and Solar Geometry on Sky Radiances Using Radiative Transfer Modeling

Giannaklis, Christos-Panagiotis; Logothetis, Stavros-Andreas; Salamalikis, Vasileios; Tzoumanikas, Panagiotis; Kazantzidis, Andreas

Radiative transfer modeling is used to investigate the effect of aerosol optical properties and water vapor on cloud-free sky radiances at various atmospheric conditions. Simulations are generated by changing the most critical aerosol optical properties, namely aerosol optical depth, Ångström exponent, the single-scattering albedo, the precipitable water, and the solar zenith angle (SZA) in three different spectral ranges: ultraviolet A, visible, and near-infrared.

2023

Automatic Correction of Non-Anechoic Antenna Measurements using Low-Pass Filters

Bekasiewicz, Adrian; Waladi, Vorya; Wojcikowski, Marek; Cao, Tuan-Vu

2023

Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling

Giannaklis, Christos-Panagiotis; Logothetis, Stavros-Andreas; Salamalikis, Vasileios; Tzoumanikas, Panagiotis; Katsidimas, Konstantinos; Kazantzidis, Andreas

We conducted a theoretical analysis of the relationship between red-to-blue (RBR) color intensities and aerosol optical properties. RBR values are obtained by radiative transfer simulations of diffuse sky radiances. Changes in atmospheric aerosol concentration (parametrized by aerosol optical depth, AOD), particle’s size distribution (parametrized by Ångström exponent, AE) and aerosols’ scattering (parametrized by single scattering albedo—SSA) lead to variability in sky radiances and, thus, affect the RBR ratio. RBR is highly sensitive to AOD as high aerosol load in the atmosphere causes high RBR. AE seems to strongly affect the RBR, while SSA effect the RBR, but not to such a great extent.

2023

Agency and responsibility in smart air pollution monitoring

Ekman, Karin; Ponti, Marisa; Grau, Marc Peñalver; Castell, Nuria; Steffansen, Rasmus Nedergård; Lissandrello, Enza

2023

Observations and Retrievals of Volcanic Ash Clouds Using Ground- and Satellite-Based Sensors

Mereu, Luigi; Scollo, Simona; Bonadonna, Costanza; Corradini, Stefano; Donnadieu, Franck; Montopoli, Mario; Vulpiani, Gianfranco; Barsotti, Sara; Freret-Lorgeril, Valentin; Gudmundsson, Magnús Tumi; Kylling, Arve; Ripepe, Maurizio

2023

Modelling of atmospheric volatile organic compounds using the EMEP MSC-W model

Ge, Yao; Simpson, David; Solberg, Sverre; van Caspel, Willem; Fagerli, Hilde; Tsyro, Svetlana; Heal, Mathew R.

2023

EMEP CCC update

Tørseth, Kjetil; Aas, Wenche

2023

Publikasjon
År
Kategori