Fant 10001 publikasjoner. Viser side 50 av 401:
To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8–41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.
2022
2022
European Registry of Materials: global, unique identifiers for (undisclosed) nanomaterials
Management of nanomaterials and nanosafety data needs to operate under the FAIR (findability, accessibility, interoperability, and reusability) principles and this requires a unique, global identifier for each nanomaterial. Existing identifiers may not always be applicable or sufficient to definitively identify the specific nanomaterial used in a particular study, resulting in the use of textual descriptions in research project communications and reporting. To ensure that internal project documentation can later be linked to publicly released data and knowledge for the specific nanomaterials, or even to specific batches and variants of nanomaterials utilised in that project, a new identifier is proposed: the European Registry of Materials Identifier. We here describe the background to this new identifier, including FAIR interoperability as defined by FAIRSharing, identifiers.org, Bioregistry, and the CHEMINF ontology, and show how it complements other identifiers such as CAS numbers and the ongoing efforts to extend the InChI identifier to cover nanomaterials. We provide examples of its use in various H2020-funded nanosafety projects.
2022
The EmSite model for high resolution emissions from machinery in construction sites
The report describes the EmSite model developed to estimate exhaust and non-exhaust emissions from non-road mobile
machinery (NRMM) used in building and construction. The model is based on a complete national database of the exact
location of construction and building activity, machine registries and variables that affect emissions (ground conditions, meteorology, type of ground material). EmSite model allows us to determine, i) the location, area and time of construction projects at fine resolution; ii) energy demand for NRMM; and iii) fuel consumption, air pollutants and GHGs emissions. For exhaust emissions, specific dynamic emission factors for NRMMs were developed. For non-exhaust emissions, an approach based on the Tier 1 (EMEP/EEA Guidebook, 2019) was chosen. EmSite allows for bottom-up estimates for NRMM employed in construction, and the results are comparable with official air pollutant and GHGs emissions.
NILU
2022
Electrification of residential heating and investment in building energy efficiency are central pillars of many national strategies to reduce carbon emissions from the built environment sector. Ireland has a strong dependence on oil use for central heating and a substantial share of homes still using solid fuels. The current national strategy calls for the retrofitting of 400,000 home heating systems with heat pumps by 2030, principally replacing oil fired heating systems. Displacing natural gas, oil and solid fuel boilers with heat pumps will have a favourable impact on climate outcomes. However, the impact on air pollutant outcomes is far more favourable when solid fuels are replaced, and the positive impact on ambient air quality is much enhanced where concentrated clusters of solid-fuel use are targeted. This research spatially analyses emissions and air pollutant concentration outcomes for both targeted and non-targeted deployments of heat pumps and shows that a focused deployment of just 3% of the national heat pump target on solid-fuel homes could offer similar progress on climate goals but with a substantial impact in terms of reducing air pollution hot spots. For the Irish residential heating season (October–March), the targeted solid fuel scenario delivers average PM2.5 concentration decreases of 20–34%. This paper shows that these targeted communities are often in areas of relative deprivation, and as such, direct support for fabric retrofitting and heat pump technology installation offers the potential to simultaneously advance climate, air and just transition policy ambitions.
2022
NILU and Hydro Aluminium performed a test campaign for measurements of CF4 and C2F6 for stack emissions at Husnes
Aluminium Smelter. Time-integrated samples were taken with evacuated canisters combined with low-flow restrictors for
continuous sampling periods as long as 6 weeks. The samples were analyzed at NILU with a Medusa preconcentration
method combined with GC-MS SIM. As a main conclusion, time integrated sampling together with Medusa GC-MS
methodology is a very precise alternative to the traditional attempts to quantify PFC-emission.
NILU
2022
Modeling the Dynamic Behavior of Radiocesium in Grazing Reindeer
Radiocesium contamination in Norwegian reindeer and the factors influencing contamination levels have been studied for more than 50 years, providing significant amounts of data. Monitoring contamination in reindeer is of utmost importance for reindeer husbandry and herders in Norway and will need to be studied for many years because of the persistent contamination levels due to the 1986 Chernobyl fallout. This paper presents a novel dynamic model that takes advantage of the large data sets that have been collected for reindeer monitoring to estimate 137Cs in reindeer meat at any given time. The model has been validated using detailed 137Cs data from one of the herds most affected by the fallout. The model basis includes detailed 137Cs soil data from aerial surveys, GPS-based knowledge of reindeer migration, and local soil-to-vegetation 137Cs transfer information. The validation exercise shows that the model satisfactorily predicts both short- and long-term changes in 137Cs concentrations in reindeer meat and suggests that the model will be a useful tool in estimating seasonal changes and evaluating possible remedial actions in case of a future fallout event.
2022
Wetland emission and atmospheric sink changes explain methane growth in 2020
Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr−1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr−1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr−1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr−1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr−1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge.
2022
In support of the global stocktake of the Paris Agreement on climate change, this study presents a comprehensive framework to process the results of an ensemble of atmospheric inversions in order to make their net ecosystem exchange (NEE) carbon dioxide (CO2) flux suitable for evaluating national greenhouse gas inventories (NGHGIs) submitted by countries to the United Nations Framework Convention on Climate Change (UNFCCC). From inversions we also deduced anthropogenic methane (CH4) emissions regrouped into fossil and agriculture and waste emissions, as well as anthropogenic nitrous oxide (N2O) emissions. To compare inversion results with national reports, we compiled a new global harmonized database of emissions and removals from periodical UNFCCC inventories by Annex I countries, and from sporadic and less detailed emissions reports by non-Annex I countries, given by national communications and biennial update reports. No gap filling was applied. The method to reconcile inversions with inventories is applied to selected large countries covering ∼90 % of the global land carbon uptake for CO2 and top emitters of CH4 and N2O. Our method uses results from an ensemble of global inversions produced by the Global Carbon Project for the three greenhouse gases, with ancillary data. We examine the role of CO2 fluxes caused by lateral transfer processes from rivers and from trade in crop and wood products and the role of carbon uptake in unmanaged lands, both not accounted for by NGHGIs. Here we show that, despite a large spread across the inversions, the median of available inversion models points to a larger terrestrial carbon sink than inventories over temperate countries or groups of countries of the Northern Hemisphere like Russia, Canada and the European Union. For CH4, we find good consistency between the inversions assimilating only data from the global in situ network and those using satellite CH4 retrievals and a tendency for inversions to diagnose higher CH4 emission estimates than reported by NGHGIs. In particular, oil- and gas-extracting countries in central Asia and the Persian Gulf region tend to systematically report lower emissions compared to those estimated by inversions. For N2O, inversions tend to produce higher anthropogenic emissions than inventories for tropical countries, even when attempting to consider only managed land emissions. In the inventories of many non-Annex I countries, this can be tentatively attributed to a lack of reporting indirect N2O emissions from atmospheric deposition and from leaching to rivers, to the existence of natural sources intertwined with managed lands, or to an underestimation of N2O emission factors for direct agricultural soil emissions. Inversions provide insights into seasonal and interannual greenhouse gas fluxes anomalies, e.g., during extreme events such as drought or abnormal fire episodes, whereas inventory methods are established to estimate trends and multi-annual changes. As a much denser sampling of atmospheric CO2 and CH4 concentrations by different satellites coordinated into a global constellation is expected in the coming years, the methodology proposed here to compare inversion results with inventory reports (e.g., NGHGIs) could be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed by this study is publicly available at https://doi.org/10.5281/zenodo.5089799 (Deng et al., 2021).
2022
2022
2022
2022
2022
2022
Based upon the thermodynamic simulation of a biogas-SOFC integrated process and the costing of its elements, the present work examines the economic feasibility of biogas-SOFCs for combined heat and power (CHP) generation, by the comparison of their economic performance against the conventional biogas-CHP with internal combustion engines (ICEs), under the same assumptions. As well as the issues of process scale and an SOFC’s cost, examined in the literature, the study brings up the determinative effects of: (i) the employed SOFC size, with respect to its operational point, as well as (ii) the feasibility criterion, on the feasibility assessment. Two plant capacities were examined (250 m3·h−1 and 750 m3·h−1 biogas production), and their feasibilities were assessed by the Internal Rate of Return (IRR), the Net Present Value (NPV) and the Pay Back Time (PBT) criteria. For SOFC costs at 1100 and 2000 EUR·kWel−1, foreseen in 2035 and 2030, respectively, SOFCs were found to increase investment (by 2.5–4.5 times, depending upon a plant’s capacity and the SOFC’s size) and power generation (by 13–57%, depending upon the SOFC’s size), the latter increasing revenues. SOFC-CHP exhibits considerably lower IRRs (5.3–13.4% for the small and 16.8–25.3% for the larger plant), compared to ICE-CHP (34.4%). Nonetheless, according to NPV that does not evaluate profitability as a return on investment, small scale biogas-SOFCs (NPVmax: EUR 3.07 M) can compete with biogas-ICE (NPV: EUR 3.42 M), for SOFCs sized to operate at 70% of the maximum power density (MPD) and with a SOFC cost of 1100 EUR·kWel−1, whereas for larger plants, SOFC-CHP can lead to considerably higher NPVs (EUR 12.5–21.0 M) compared to biogas-ICE (EUR 9.3 M). Nonetheless, PBTs are higher for SOFC-CHP (7.7–11.1 yr and 4.2–5.7 yr for the small and the large plant, respectively, compared to 2.3 yr and 3.1 yr for biogas-ICE) because the criterion suppresses the effect of SOFC-CHP-increased revenues to a time period shorter than the plant’s lifetime. Finally, the economics of SOFC-CHP are optimized for SOFCs sized to operate at 70–82.5% of their MPD, depending upon the SOFC cost and the feasibility criterion. Overall, the choice of the feasibility criterion and the size of the employed SOFC can drastically affect the economic evaluation of SOFC-CHP, whereas the feasibility criterion also determines the economically optimum size of the employed SOFC.
2022