Fant 10002 publikasjoner. Viser side 73 av 401:
2021
2021
2021
2021
2021
2021
2021
Urban herring gulls (Larus argentatus) are exposed to contaminants from aquatic, terrestrial and anthropogenic sources. We aim to assess if differences in urbanisation affect ecological niche and contaminant concentrations in female herring gulls. Furthermore, we investigated maternal transfer from mothers to eggs for all the target compounds, including chlorinated paraffins (CPs) and cyclic volatile methyl siloxane (cVMSs), which to our knowledge have not been assessed in herring gulls previously. We compare concentrations of legacy and emerging contaminants and metals in blood and eggs between two herring gull colonies located 51 km apart, in the urban influenced Norwegian Oslofjord. While both colonies are within an urbanised area, the inner fjord is more so, as it is surrounded by Oslo, the capital and largest city in Norway Stable isotopes of carbon and nitrogen indicated a more marine ecological niche in the outer than the inner fjord colony, although with overlap. Persistent organic pollutant (POP) concentrations were similar in the inner and outer fjord colonies, while the short-chained chlorinated paraffins (SCCP), which are recently added to the Stockholm convention and contaminants of emerging concern (CECs) varied, with higher concentrations of SCCP and the cVMS decamethylcyclopentasiloxane (D5) in females and eggs of the inner fjord colony. Per- and polyfluorinated substances (PFAS) concentrations were higher in the outer fjord colony, likely linked to releases from a point-source (airport and waste management facility with open access to food waste). In blood, chlorinated paraffins contributed most the total lipophilic contaminants (inner: 78%, outer: 56%), while polychlorinated biphenyls (PCBs) were the most abundant lipophilic contaminants in eggs (inner: 62%, outer: 46%). Dechloranes and brominated flame retardants (BFRs) were detected in few samples. Maternal transfer, assessed by egg to blood ratios, of cVMSs were similar to the POPs with mean log ratio 0.39 (D5), while it was lower for SCCPs, with log ratios-0.77. Our results indicate comparable POP exposure of the herring gulls in the inner and outer Oslofjord, likely due to overlap in ecological niches between the colonies and wide distribution of POPs. The differences between the colonies in concentrations of PFAS, cVMS and CPs shows that point source exposures and urban influence may be more important than ecological niche for these compounds.
2021
Development of Renewable Energy and its Impact on Air Quality. Co-benefits and Trade-Offs.
							This study is an continuation of the work initiated in the European Topic Centre on Climate Change Mitigation and Energy (ETC/CME; report 2019/8) on the effect of the development of renewable energy sources (RES) since 2005 on emissions of anthropogenic air pollutants, which found that RES have led to an estimated increase of primary particulate matter emissions and a decrease of emissions of sulphur oxides and nitrogen oxides. The current study aims at evaluating the impact of these emission changes on air quality and human health by using the air quality model CHIMERE to understand the distribution of emissions. To this end, the emissions corresponding to a reference scenario and to different scenarios of development of renewable energy sources were spatialized over Europe based on the spatialization of emissions used within the Copernicus Atmosphere Monitoring Service (CAMS). The CHIMERE model was applied to calculate, for the year 2016, the impact of the different scenarios on air quality. Finally, the possible impact on human health was assessed. We also include a specific section devoted to residential emission spatialization techniques to review the related uncertainties.
According to the simulation results using emissions based on official data, significant increases of particulate matter concentrations exceeding 1 μg/m3 were found for some countries, linked primarily to the increase in residential wood burning when comparing 2005 with 2016. Exceptions were Portugal and Greece (two countries that decreased their use of biomass for heating). At the scale of the EU27+UK, in 2016, the interplay between emission increases due to biomass use and emission decreases due to all other RES growth is estimated to be responsible for around 9 200 premature deaths and 97 000 years of life lost. As such, the increase in solid biomass heating alone, (due particularly by the high emissions of fine particulate matter from domestic stoves), is estimated to be responsible for an increase of around 10 700 premature deaths and 113 000 years of life lost in 2016. These premature deaths could have been prevented by promoting the development of other RES than solid biomass heating.
Similar results were found at the European scale with simulations using emissions based on expert estimates but with strong differences according to the country. The differences are mostly due to differences in emissions that may not account for semi-volatile organic compounds for some countries. Excluding heating with biomass, all other RES use appears to have led to small reductions of particulate matter concentrations across the Union, with air quality benefits estimated at 1 600 avoided premature deaths and 16 000 prevented years of life lost in 2016. This is because the deployment of RES other than heating from solid biomass from 2005 to 2016 only lead to small changes in emissions of pollutants. However, these sources represented only 13% of the heating and electricity production in 2016.
						
ETC/ATNI
2021
2021
Environmental Contaminants in an Urban Fjord, 2020
This programme, “Environmental Contaminants in an Urban Fjord” has covered sampling and analyses of sediment and organisms in a marine food web of the Inner Oslofjord, in addition to samples of blood and eggs from herring gull. The programme also included inputs of pollutants via surface water (stormwater), and effluent water and sludge from a wastewater treatment plant. The bioaccumulation potential of the contaminants in the Oslo fjord food web was evaluated. The exposure to/accumulation of the contaminants was also assessed in birds. A vast number of chemical parameters have been quantified, in addition to some biological effect parameters in cod, and the report serves as a status description of the concentrations of these chemicals in different compartments of the Inner Oslofjord marine ecosystem.
Norsk institutt for vannforskning (NIVA)
2021
2021
PAH measurements at Lista. January 2020 – December 2020.
							On behalf of Aluminiumindustriens Miljøsekretariat (AMS) and Alcoa Lista, NILU – Norwegian institute for air research has 
conducted a sampling campaign in the surroundings of the Alcoa Lista aluminium smelter in order to update the knowledge on  PAH-concentrations around the smelter today. Samples were taken in the period January – December 2020 and 
analysed for particle bound PAHs. As a consequence of reduced emissions compared to earlier measurements, the ambient 
concentrations of benzo(a)pyrene (BaP) were reduced. BaP had an annual average concentration below the target value at 
both sampling sites. At Huseby, the lower assessment threshold was exceeded. PAH-levels in the area were similar to those observed in Norwegian cities.
						
NILU
2021
2021
Grenseområdene Norge-Russland. Luft- og nedbørkvalitet 2020.
							Smelteverkene i nordvest-Russland slapp ut store mengder svoveldioksid (SO2) og tungmetaller. Utslippene påvirket luft- og nedbørkvalitet i grenseområdene. Miljøovervåkingen viser at grenseverdier for SO2 er overholdt i kalenderåret 2020, samt for vinter 2019/20. Smelteverket i Nikel stengte ned 23. desember 2020 og dette er ventet å gi stor nedgang i 
forurensningen i grenseområdene. Målsettingsverdier for Ni, As og Cd er overholdt.
						
NILU
2021
2021
This study introduces an Earth observation (EO)-based system which is capable of operationally estimating and continuously monitoring the ultraviolet index (UVI) in Europe. UVIOS (i.e., UV-Index Operating System) exploits a synergy of radiative transfer models with high-performance computing and EO data from satellites (Meteosat Second Generation and Meteorological Operational Satellite-B) and retrieval processes (Tropospheric Emission Monitoring Internet Service, Copernicus Atmosphere Monitoring Service and the Global Land Service). It provides a near-real-time nowcasting and short-term forecasting service for UV radiation over Europe. The main atmospheric inputs for the UVI simulations include ozone, clouds and aerosols, while the impacts of ground elevation and surface albedo are also taken into account. The UVIOS output is the UVI at high spatial and temporal resolution (5 km and 15 min, respectively) for Europe (i.e., 1.5 million pixels) in real time. The UVI is empirically related to biologically important UV dose rates, and the reliability of this EO-based solution was verified against ground-based measurements from 17 stations across Europe. Stations are equipped with spectral, broadband or multi-filter instruments and cover a range of topographic and atmospheric conditions. A period of over 1 year of forecasted 15 min retrievals under all-sky conditions was compared with the ground-based measurements. UVIOS forecasts were within ±0.5 of the measured UVI for at least 70 % of the data compared at all stations. For clear-sky conditions the agreement was better than 0.5 UVI for 80 % of the data. A sensitivity analysis of EO inputs and UVIOS outputs was performed in order to quantify the level of uncertainty in the derived products and to identify the covariance between the accuracy of the output and the spatial and temporal resolution and the quality of the inputs. Overall, UVIOS slightly overestimated the UVI due to observational uncertainties in inputs of cloud and aerosol. This service will hopefully contribute to EO capabilities and will assist the provision of operational early warning systems that will help raise awareness among European Union citizens of the health implications of high UVI doses.
2021
Evaluation and optimization of ICOS atmosphere station data as part of the labeling process
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmosphere network through the 23 stations that were labeled between November 2017 and November 2019. We describe the labeling steps, as well as the quality controls, used to verify that the ICOS data (CO2, CH4, CO and meteorological measurements) attain the expected quality level defined within ICOS. To ensure the quality of the greenhouse gas data, three to four calibration gases and two target gases are measured: one target two to three times a day, the other gases twice a month. The data are verified on a weekly basis, and tests on the station sampling lines are performed twice a year. From these high-quality data, we conclude that regular calibrations of the CO2, CH4 and CO analyzers used here (twice a month) are important in particular for carbon monoxide (CO) due to the analyzer's variability and that reducing the number of calibration injections (from four to three) in a calibration sequence is possible, saving gas and extending the calibration gas lifespan. We also show that currently, the on-site water vapor correction test does not deliver quantitative results possibly due to environmental factors. Thus the use of a drying system is strongly recommended. Finally, the mandatory regular intake line tests are shown to be useful in detecting artifacts and leaks, as shown here via three different examples at the stations.
2021
Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2020.
							Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2020 og trender over tid.
I den landsrepresentative skogovervåkingen har kronetettheten hos gran og furu holdt seg stabil i 2020 sammenlignet med tidligere år. Det ble registrert lite misfarging hos bartrærne.
Skadenivået hos både bartrær, bjørk og andre løvtrær var lavere enn i 2019. Abiotiske faktorer med snø, vind og tørke som de viktigste årsakene dominerte skadebildet hos alle treslag.
Kjemiske analyser av luft og nedbør i den intensive skogovervåkingen viser at det fortsatt er høyest verdier av antropogene svovel- og nitrogenforbindelser på den sørligste overvåkingsflata i Birkenes grunnet langtransportert forurensing. Den høyeste konsentrasjonen av nitrogendioksid i luft ble målt på stasjonen i Hurdal i 2020, noe som skyldes utslipp fra veitrafikken i regionen. Det var lave nivåer av bakkenært ozon i Norge i 2020 og ingen overskridelser av UNECEs grenseverdi på 5000 ppb-timer for skog. Vegetasjonsanalysene fra Hurdal har påvist en endring i bunn-vegetasjonens artssammensetning grunnet økt lystilgang og mye barnålstrø. Både hogst utenfor overvåkingsflata og flere skrantende, råteangrepne og døde grantrær i flata har bidratt til økt lystilgang og til større strømengde på bakken. Mange grantrær på flata i Hurdal er sterkt preget av råte med lav kronetetthet og mye misfarging. Flere trær på flata har dødd de seinere årene som følge av råteskader, ofte i kombinasjon med andre faktorer som vindfelling og skader etter tørken i 2018 med påfølgende barkbilleangrep.
Overvåking av bjørkemålere har vist at fjellbjørkeskogen både i Nord-Norge og fjellregionene i sørlige halvdel av landet har vært utsatt for betydelige utbrudd av bjørkemålere i løpet av perioden 2012–2018. Overvåkingsdata fra 2019 og 2020 tyder imidlertid på at målerbestandene nå er lave eller i sterk tilbakegang i det meste av landet. I Troms har målerbestandene allerede nådd et bunnpunkt, og bestandene er nedadgående også i fjellet i Sør-Norge. Vi forventer derfor at skogen i mesteparten av Norge vil bli mindre utsatt for angrep av bjørkemålere de neste par årene.
De fleste fylkene hadde en økning i fangstverdiene i barkbilleovervåkingen i 2020-sesongen. Alle fangstverdiene var imidlertid under 10 000 biller per felle, mens de høyeste verdiene ved slutten av utbruddet på 1970-tallet var rundt 25 000 biller per felle. Fylkene rundt Oslofjorden hadde noen lokale tilfeller av tørke- og barkbilleskader. Det ble ikke funnet noen tydelig økning av fellefangstene i tiden for en annen generasjon, men modellberegninger viser at stor granbarkbille har nok døgngrader til å gjennomføre to generasjoner før overvintring.
I august 2020 ble soppen Diplodia sapinea funnet på sterkt skadet vrifuru i Ås kommune. Tidligere har det blitt gjort noen få funn av soppen på andre bartrearter i det samme området. D. sapinea er vanlig i varmere strøk på flere kontinenter, spesielt på furuarter. De pågående klima-endringene har trolig bidratt til at soppen har kunnet spre og etablere seg mot nord, men vi kan heller ikke utelukke innførsel av soppen via plantemateriale til bruk i grøntanlegg eller skog. D. sapinea er trolig bare i etableringsfasen i Norge, og har til dags dato gjort liten skade på våre stedegne bartrær.....
						
NIBIO
2021
2021
2021
The long-term time trends of atmospheric pollutants at eight Arctic monitoring stations are reported. The work was conducted under the Arctic Monitoring and Assessment Programme (AMAP) of the Arctic Council. The monitoring stations were: Alert, Canada; Zeppelin, Svalbard; Stórhöfði, Iceland; Pallas, Finland; Andøya, Norway; Villum Research Station, Greenland; Tiksi and Amderma, Russia. Persistent organic pollutants (POPs) such as α- and γ-hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), α-endosulfan, chlordane, dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) showed declining trends in air at all stations. However, hexachlorobenzene (HCB), one of the initial twelve POPs listed in the Stockholm Convention in 2004, showed either increasing or non-changing trends at the stations. Many POPs demonstrated seasonality but the patterns were not consistent among the chemicals and stations. Some chemicals showed winter minimum and summer maximum concentrations at one station but not another, and vice versa. The ratios of chlordane isomers and DDT species showed that they were aged residues. Time trends of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were showing decreasing concentrations at Alert, Zeppelin and Andøya. The Chemicals of Emerging Arctic Concern (CEAC) were either showing stable or increasing trends. These include methoxychlor, perfluorohexane sulfonic acid (PFHxS), 6:2 fluorotelomer alcohol, and C9-C11 perfluorocarboxylic acids (PFCAs). We have demonstrated the importance of monitoring CEAC before they are being regulated because model calculations to predict their transport mechanisms and fate cannot be made due to the lack of emission inventories. We should maintain long-term monitoring programmes with consistent data quality in order to evaluate the effectiveness of chemical control efforts taken by countries worldwide.
2021