Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9885 publikasjoner. Viser side 91 av 396:

Publikasjon  
År  
Kategori

Strengthened Linkage between Midlatitudes and Arctic in Boreal Winter

Xu, Xinping; He, Shengping; Gao, Yongqi; Furevik, Tore; Huijun, Wang; Li, Fei; Ogawa, Fumiaki

2019

Global tropospheric OH concentrations in the past four decades inferred from surface network and satellite trace gas observations

Prinn, Ronald G.; Sheng, Jian-Xiong; Harth, Christina M.; Krummel, Paul B.; Lunder, Chris Rene; Muhle, Jens; Odoherty, Simon Joseph; Salameh, Peter K.; Weiss, Ray F.; Young, Dickon; Sheese, Patrick; Walker, Kaley A.

2019

Widespread Arctic lead pollution since 1000 BCE documents ancient and medieval European lead-silver smelting, major historical events, and northern-hemisphere Industrialization

Chellman, Nathan J; McConnell, Joseph R.; Wilson, Andrew; Stohl, Andreas; Arienzo, Monica M; Eckhardt, Sabine; Fritzsche, Diedrich; Kipfstuhl, Sepp; Opel, Thomas; Thompson, Elisabeth; Pollard, Mark; Place Jr, Philip; Steffensen, Jørgen Peder

2019

Satellite-constrained ammonia improves performance of CTMs

Evangeliou, Nikolaos; Balkanski, Yves; Eckhardt, Sabine; Cozic, Anne; Hauglustaine, Didier; Stohl, Andreas

2019

Source Attribution of VOCs in the Canadian Oil Sands using Hierarchical Clustering

Makar, Paul; Liggio, John; Leithead, Amy; Wentzell, Jeremy; Stroud, Craig; Soares, Joana; Akingunola, Ayodeji; Zhang, Junhua; Moran, Michael; Li, Shao-Meng

2019

How Stratospheric Chemistry and Transport Drive Surface Variability of N2O

Ruiz, Daniel J.; Prather, Michael J.; Strahan, Susan E.; Steenrod, Stephen D.; Thompson, Rona Louise; Froidevaux, Lucien

2019

Increased nitrous oxide emissions in East Asia as estimated by bottom-up and top-down approaches

Pan, Naiqing; Xu, Rongting; Pan, Shufen; Thompson, Rona Louise; Canadell, Josep G.; Jackson, Robert B.; Winiwarter, Wilfried; Zhou, Feng

2019

Nitrous oxide emission from North America based on bottom-up and top-down approaches: trends, drivers, and comparison

Xu, Rongting; Tian, Hanqin; Thompson, Rona Louise; Canadell, Josep G.; GCP/INI Synthesis Team, *

2019

The magnitude, trend and drivers of the global nitrous oxide budget: a new assessment

Tian, Hanqin; Thompson, Rona Louise; Xu, Rongting; Canadell, Josep G.; Davidson, Eric A.; Ciais, Philippe; Jackson, Robert B.; Winiwarter, Wilfried; Suntharalingam, Parvadha; Regnier, Pierre; Zhou, Feng; Janssens-Maenhout, Greet; Arneth, Almut; Li, Wei; Pan, Naiqing; Pan, Shufen; Prather, Michael J.; Raymond, Peter A.; Shi, Hao; GCP/INI Synthesis Team, *

2019

Impact of Snow Initialization in Subseasonal-to-Seasonal (S2S) Winter Forecasts with the Norwegian Climate Prediction Model

Li, Fei; Orsolini, Yvan; Keenlyside, Noel; Shen, Mao-Lin; Counillon, Francois; Wang, Yiguo

2019

Semidiurnal Tidal Perturbations during SSW in SuperDARN and WACCM-X

Zhang, Jiarong; Limpasuvan, Var; Orsolini, Yvan; Espy, Patrick Joseph; Hibbins, Robert

2019

Tiltaksutredning for lokal luftkvalitet i Tromsø

Weydahl, Torleif; Walker, Sam-Erik; Johnsrud, Mona; Vo, Dam Thanh; Ranheim, Patrick

Tiltaksutredningen, med handlingsplan og tiltak, skal bidra til å redusere luftforurensningen til et nivå som tilfredsstiller kravene i forurensningsforskriften. Tiltaksutredningen omfatter en kartlegging av luftkvaliteten i Tromsø ved trafikkberegninger og utslipps- og spredningsberegninger for PM10, PM2,5 og NO2 for Dagens situasjon 2016 og Framtidig situasjon 2023 med og uten tiltak mot svevestøv. Basert på resultatene fra beregningene og i samarbeid med oppdragsgiver og arbeidsgruppen, er det foreslått en revidert handlings- og beredskapsplan som skal behandles politisk.

NILU

2019

Amine based CO2 capture at Melkøya. Modelling of nitrosamines and nitramines.

Tønnesen, Dag; Svendby, Tove Marit; Weydahl, Torleif

NILU

2019

Trends of inorganic and organic aerosols and precursor gases in Europe: insights from the EURODELTA multi-model experiment over the 1990–2010 period

Ciarelli, Giancarlo; Theobald, Mark, R.; Vivanco, Marta García; Beekmann, Matthias; Aas, Wenche; Andersson, Camilla; Bergström, Robert; Manders-Groot, Astrid; Couvidat, Florian; Mircea, Mihaela; Tsyro, Svetlana; Fagerli, Hilde; Mar, Kathleen; Raffort, Valentin; Roustan, Yelva; Pay, Maria-Teresa; Schaap, Martijn; Kranenburg, Richard; Adani, Mario; Briganti, Gino; Cappelletti, Andrea; D'Isidoro, Massimo; Cuvelier, Cornelis; Cholakian, Arineh; Bessagnet, Bertrand; Wind, Peter; Colette, Augustin

In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/GAINS) and corresponding year-by-year meteorology derived from ERA-Interim global reanalysis. For this study, long-term observations of particle sulfate (SO2−4

), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to evaluate the model results. The trend analysis was performed for the full 21 years (referred to as PT) but also for two 11-year subperiods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2).

The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e., 1990–2000, with a 64 %–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade (P2), the models estimated a mean relative reduction in SO2 concentrations of about 34 %–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19 % and 23 % (range of all the models) during the P1 period, and 12 % and between 22 % and 26 % (range of all the models) during the P2 period, respectively.

Comparisons of observed and modeled trends in SO2−4
concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42 %–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations and with good performance also during the P2 and PT periods, even though all the models overpredicted the number of statistically significant decreasing trends during the P2 period. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO2−4

concentrations compared with their gas-phase precursor (i.e., SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry.

An analysis of the trends in TNO3 concentrations indicated a 28 %–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO−3
) concentrations revealed that the relative reduction in HNO3 was larger than that for NO−3 during the P1 period, which was mainly attributed to an increased availability of “free ammonia”. By contrast, trends in modeled HNO3 and NO−3 concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, underpredicted by all models, with worse performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic non-methane VOC (NMVOC) precursors. Biogenic emission data...

2019

VOC measurements 2017

Solberg, Sverre; Claude, Anja; Reimann, Stefan

This report presents VOC measurements carried out during 2017 at EMEP monitoring sites. In total, 20 sites reported VOC data from EMEP VOC sites this year. Some of the data sets are considered preliminary and are not included in the report. The monitoring of NMHC (non-methane hydrocarbons) has become more diverse with time in terms of instrumentation. Starting in the early 1990s with standardized methods based on manual sampling in steel canisters with subsequent analyses at the lab, the methods now consist of a variety of instruments and measurement principles, including automated continuous monitors and manual flask samples. For oxygenated VOCs (OVOCs), sampling in DNPH-tubes with subsequent labanalyses is still the only method in use at EMEP sites. Within the EU infrastructure project ACTRIS-2, data quality issues related to measurements of VOC have been an important topic. Many of the institutions providing VOC data to EMEP have participated in the ACTRIS-2 project, either as formal partners or on a voluntary basis. Participation in ACTRIS-2 has meant an extensive effort with data checking including detailed discussions between the ACTRIS community and individual participants. There is no doubt that this extensive effort has benefited the EMEP program and has led to improved data quality in general. Comparison between median levels in 2017 compared to the medians of the previous 10-years period, revealed a similar north-to-south pattern for several species. Changes in instrumentation, procedures, station network etc. during the last two decades make it difficult to provide a rigorous and pan-European assessment of long-term trends of the observed VOCs. In this report we have estimated the longterm trends in NMHC over the 2000-2017 period at six selected sites by two independent statistical methods. These estimates indicate marked differences in the trends for the individual species. Small or non-significant trends were found for ethane over this period followed by propane which also showed fairly small reductions. On the other hand, components linked to road traffic (ethene, ethyne and toluene) showed the strongest drop in mean concentrations, up to 60-80% at some stations. The trend in n-butane was between these two groups of species with an estimated drop in the annual mean concentration of 20-50% over the 2000-2017 period.

NILU

2019

Vurdering av rentbrennende vedovners betydning for partikkelutslipp i Oslo kommune. Effekt på svevestøvnivåer.

Lopez-Aparicio, Susana; Grythe, Henrik

Målet med studien er å vurdere effekten av tilskudd til utskifting av gamle vedovner til nye rentbrennende ovner, og i hvilken grad ordningen har påvirket det totale partikkelutslippet og luftkonsentrasjoner i Oslo kommune. NILU har utført tre beregninger; 1) utslippsmodellering og spredningsberegninger for 4 ulike scenarioer; 2) utslippsreduksjon fra tilskuddsordningen i Oslo kommune; og 3) vurdering av tidsutvikling av vedfyringsutslipp, vedforbruk og utslippsfaktorer for kommuner med og uten tilskuddsordning. Modellering og vurdering av den potensielle utslippsreduksjonen som kan tilskrives tilskuddsordningen, viser at tilskuddsordningen potensielt har en stor effekt på reduksjon av partikkelutslipp og konsentrasjoner av PM2.5 og PM10. Beregnigene viser at tilskuddsordningen i Oslo kommune gir betydelig redusert utslippsfaktor over tid, men effekten på totalt PM-utslipp er liten.

NILU

2019

Physical controls of dynamics of methane venting from a shallow seep area west of Svalbard

Silyakova, Anna; Jansson, Pär; Serov, Pavel; Ferré, Benedicte; Pavlov, A.K; Hattermann, Tore; Graves, C.A; Platt, Stephen Matthew; Myhre, Cathrine Lund; Gründger, Friederike; Niemann, Helge

We investigate methane seepage on the shallow shelf west of Svalbard during three consecutive years, using discrete sampling of the water column, echosounder-based gas flux estimates, water mass properties, and numerical dispersion modelling. The results reveal three distinct hydrographic conditions in spring and summer, showing that the methane content in the water column is controlled by a combination of free gas seepage intensity and lateral water mass movements, which disperse and displace dissolved methane horizontally away from the seeps. Horizontal dispersion and displacement of dissolved methane are promoted by eddies originating from the West Spitsbergen Current and passing over the shallow shelf, a process that is more intense in winter and spring than in the summer season. Most of the methane injected from seafloor seeps resides in the bottom layer even when the water column is well mixed, implying that the controlling effect of water column stratification on vertical methane transport is small. Only small concentrations of methane are found in surface waters, and thus the escape of methane into the atmosphere above the site of seepage is also small. The magnitude of the sea to air methane flux is controlled by wind speed, rather than by the concentration of dissolved methane in the surface ocean.

Pergamon Press

2019

Urban Air Quality Perception

Grossberndt, Sonja; Castell, Nuria; Fredriksen, Mirjam; Schneider, Philipp; Bartonova, Alena

2019

Lufta er for alle!

Grossberndt, Sonja; Castell, Nuria

2019

Publikasjon
År
Kategori