Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10002 publikasjoner. Viser side 89 av 401:

Publikasjon  
År  
Kategori

Lead and Antimony in Basal Ice From Col du Dome (French Alps) Dated With Radiocarbon: A Record of Pollution During Antiquity

Preunkert, Susanne; McConnell, Joseph R.; Hoffmann, Helene; Legrand, Michel; Wilson, Andrew I.; Eckhardt, Sabine; Stohl, Andreas; Chellman, Nathan J; Arienzo, Monica M; Friedrich, Ronny

2019

Godkjenning av instrumenter for måling av lokal luftkvalitet. Forslag til godkjenningsordning for Norge.

Hak, Claudia; Marsteen, Leif

Instrumenter som skal brukes til måling av lokal luftkvalitet i henhold til forurensningsforskriften skal være godkjente for dette formålet. Norge har per i dag ingen godkjenningsordning. Inntil videre godkjennes derfor de instrumenter som det svenske referanselaboratoriet for luft har godkjent.
Denne rapporten beskriver hvordan en godkjenningsordning kan etableres i Norge, basert på rutinen brukt i Sverige, gjennom å belyse den lovmessige forankringen og prosedyren for typegodkjenning. Oppgavene og ansvarsfordelingen mellom den ansvarlige forvaltningsmyndigheten (Miljødirektoratet) og Referanselaboratoriet er forklart.
Miljødirektoratet rapport, M-1327/2019.

NILU

2019

Trends in measured NO2 and PM. Discounting the effect of meteorology.

Solberg, Sverre; Walker, Sam-Erik; Schneider, Philipp

This report documents a study on long-term trends in observed atmospheric levels of NO2, PM10 and PM2.5 based on data from the European Environmental Agency (EEA) Airbase v8 (EEA, 2018). The main aim is to evaluate to what extent the observed time series could be simulated as a function of various local meteorological data plus a time-trend by a Generalized Additive Model (GAM). The GAM could be regarded an advanced multiple regression model. If successful, such a model could be used for several purposes; to estimate the long-term trends in NO2 and PM when the effect of the inter-annual variations in meteorology is removed, and secondly, to “explain” the concentration levels in one specific year in terms of meteorological anomalies and long-term trends. The GAM method was based on a methodology developed during a similar project in 2017 looking at the links between surface ozone and meteorology.
The input to the study consisted of gridded model meteorological data provided through the EURODELTA Trends project (Colette et al., 2017) for the 1990-2010 period as well as measured data on NO2, PM10 and PM2.5 extracted from Airbase v8. The measurement data was given for urban, suburban and rural stations, respectively. The analysis was split into two time periods, 1990-2000 and 2000-2010 since the number of stations differ substantially for these periods and since there is reason to believe that the trends differ considerably between these two periods.
The study was focused on the 4-months winter period (Nov-Feb) since it was important to assure a period of the year with consistent and homogeneous relationships between the input explanatory data (local meteorology) and the levels of NO2 and PM. For NO2, this period will likely cover the season with the highest concentration levels whereas for PM high levels could be expected outside this period due to processes such as secondary formation, transport of Saharan dust and sea spray.
When measured by the R2 statistic, the GAM method performed best for NO2 in Belgium, the Netherlands, NW Germany and the UK. Significantly poorer performance was found for Austria and areas in the south. For PM10 there were less clear geographical patterns in the GAM performance.
Based on a comparison between the meteorologically adjusted trends and plain linear regression, our results indicate that for the 1990-2000 period meteorology caused an increase in NO2 concentrations that counteracted the effect of reduced emissions. For the period 2000-2010 we find that meteorology lead to reduced NO2 levels in the northwest and a slight increase in the south.
The amount of observational data is much less for PM than for NO2. For the 1990-2000 period the number of sites with sufficient length of time series is too small to apply the GAM method on a European scale. For the 2000-2010 period, we find that the general performance of the GAM method is poorer for PM10 than for NO2. With respect to the link between PM10 and temperature, the results indicate a marked geographical pattern with a negative relationship in central Europe and a positive relationship in Spain, southern France and northern Italy.
For PM10 during 2000-2010, the vast majority of the estimated trends are found to be negative. The difference between the GAM trend and the plain linear regression, indicates that meteorology lead to increased PM10 levels in the southern and central parts and decreased levels in the north.
For PM2.5 it turned out that the amount of data in the entire period 1990-2010 was too small to use the GAM method in a meaningful way on a European scale. Only a few sites had sufficient time series and thus more recent data are required.

ETC/ACM

2019

Bruk av fjernmålinger for overvåkning av luft og atmosfære, muligheter og begrensninger

Aas, Wenche; Stebel, Kerstin; Schneider, Philipp; Evangeliou, Nikolaos; Svendby, Tove Marit; Berglen, Tore Flatlandsmo; Myhre, Cathrine Lund; Kylling, Arve; Pisso, Ignacio; Fjæraa, Ann Mari

2019

How Stratospheric Chemistry and Transport Drive Surface Variability of N2O

Ruiz, Daniel J.; Prather, Michael J.; Strahan, Susan E.; Steenrod, Stephen D.; Thompson, Rona Louise; Froidevaux, Lucien

2019

Satellite-constrained ammonia improves performance of CTMs

Evangeliou, Nikolaos; Balkanski, Yves; Eckhardt, Sabine; Cozic, Anne; Hauglustaine, Didier; Stohl, Andreas

2019

Citizens and sensors for air quality. NILU's activities 2012-2019.

Bartonova, Alena; Castell, Nuria; Dauge, Franck Rene; Fredriksen, Mirjam; Grossberndt, Sonja; Liu, Hai-Ying; Schneider, Philipp

2019

Air pollution: can subjective perception be related to objective measures?

Bartonova, Alena; Grossberndt, Sonja; Castell, Nuria

2019

Widespread Arctic lead pollution since 1000 BCE documents ancient and medieval European lead-silver smelting, major historical events, and northern-hemisphere Industrialization

Chellman, Nathan J; McConnell, Joseph R.; Wilson, Andrew; Stohl, Andreas; Arienzo, Monica M; Eckhardt, Sabine; Fritzsche, Diedrich; Kipfstuhl, Sepp; Opel, Thomas; Thompson, Elisabeth; Pollard, Mark; Jr, Philip Place; Steffensen, Jørgen Peder

2019

Nitrous oxide emission from North America based on bottom-up and top-down approaches: trends, drivers, and comparison

Xu, Rongting; Tian, Hanqin; Thompson, Rona Louise; Canadell, Josep G.; Team, * GCP/INI Synthesis

2019

Co-Constructing City Futures: Enabling Participation in Urban Planning Processes with ICTs

Smørdal, Ole; Hennissen, Grete Kristin; Hoelscher, Kristian; Wensaas, Kristina ebbing; Lopez-Aparicio, Susana; Pettersen, Ida Nilstad; Wilson, Alexander; Kahlia, Maarit

2019

The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway

Grythe, Henrik; Lopez-Aparicio, Susana; Vogt, Matthias; Vo, Dam Thanh; Hak, Claudia; Halse, Anne Karine; Hamer, Paul David; Santos, Gabriela Sousa

We present here emissions estimated from a newly developed emission model for residential wood combustion (RWC) at high spatial and temporal resolution, which we name the MetVed model. The model estimates hourly emissions resolved on a 250 m grid resolution for several compounds, including particulate matter (PM), black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) in Norway for a 12-year period. The model uses novel input data and calculation methods that combine databases built with an unprecedented high level of detail and near-national coverage. The model establishes wood burning potential at the grid based on the dependencies between variables that influence emissions: i.e. outdoor temperature, number of and type and size of dwellings, type of available heating technologies, distribution of wood-based heating installations and their associated emission factors. RWC activity with a 1 h temporal profile was produced by combining heating degree day and hourly and weekday activity profiles reported by wood consumers in official statistics. This approach results in an improved characterisation of the spatio-temporal distribution of wood use, and subsequently of emissions, required for urban air quality assessments. Whereas most variables are calculated based on bottom-up approaches on a 250 m spatial grid, the MetVed model is set up to use official wood consumption at the county level and then distributes consumption to individual grids proportional to the physical traits of the residences within it. MetVed combines consumption with official emission factors that makes the emissions also upward scalable from the 250 m grid to the national level.

The MetVed spatial distribution obtained was compared at the urban scale to other existing emissions at the same scale. The annual urban emissions, developed according to different spatial proxies, were found to have differences up to an order of magnitude. The MetVed total annual PM2.5 emissions in the urban domains compare well to emissions adjusted based on concentration measurements. In addition, hourly PM2.5 concentrations estimated by an Eulerian dispersion model using MetVed emissions were compared to measurements at air quality stations. Both hourly daily profiles and the seasonality of PM2.5 show a slight overestimation of PM2.5 levels. However, a comparison with black carbon from biomass burning and benzo(a)pyrene measurements indicates higher emissions during winter than that obtained by MetVed. The accuracy of urban emissions from RWC relies on the accuracy of the wood consumption (activity data), emission factors and the spatio-temporal distribution. While there are still knowledge gaps regarding emissions, MetVed represents a vast improvement in the spatial and temporal distribution of RWC.

2019

Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions

Evangeliou, Nikolaos; Kylling, Arve; Eckhardt, Sabine; Myroniuk, Viktor; Stebel, Kerstin; Paugam, Ronan; Zibtsev, Sergiy; Stohl, Andreas

Highly unusual open fires burned in western Greenland between 31 July and 21 August 2017, after a period of warm, dry and sunny weather. The fires burned on peatlands that became vulnerable to fires by permafrost thawing. We used several satellite data sets to estimate that the total area burned was about 2345 ha. Based on assumptions of typical burn depths and emission factors for peat fires, we estimate that the fires consumed a fuel amount of about 117 kt C and emitted about 23.5 t of black carbon (BC) and 731 t of organic carbon (OC), including 141 t of brown carbon (BrC). We used a Lagrangian particle dispersion model to simulate the atmospheric transport and deposition of these species. We find that the smoke plumes were often pushed towards the Greenland ice sheet by westerly winds, and thus a large fraction of the emissions (30 %) was deposited on snow- or ice-covered surfaces. The calculated deposition was small compared to the deposition from global sources, but not entirely negligible. Analysis of aerosol optical depth data from three sites in western Greenland in August 2017 showed strong influence of forest fire plumes from Canada, but little impact of the Greenland fires. Nevertheless, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar data showed that our model captured the presence and structure of the plume from the Greenland fires. The albedo changes and instantaneous surface radiative forcing in Greenland due to the fire emissions were estimated with the SNICAR model and the uvspec model from the libRadtran radiative transfer software package. We estimate that the maximum albedo change due to the BC and BrC deposition was about 0.007, too small to be measured. The average instantaneous surface radiative forcing over Greenland at noon on 31 August was 0.03–0.04 W m−2, with locally occurring maxima of 0.63–0.77 W m−2 (depending on the studied scenario). The average value is up to an order of magnitude smaller than the radiative forcing from other sources. Overall, the fires burning in Greenland in the summer of 2017 had little impact on the Greenland ice sheet, causing a small extra radiative forcing. This was due to the – in a global context – still rather small size of the fires. However, the very large fraction of the emissions deposited on the Greenland ice sheet from these fires could contribute to accelerated melting of the Greenland ice sheet if these fires become several orders of magnitude larger under future climate.

2019

The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates)

Gajski, Goran; Žegura, Bojana; Ladeira, Carina; Pourrut, Bertrand; Bo, Cristian Del; Novak, Matjaž; Srámková, Monika; Milić, Mirta; Gutzkow, Kristine Bjerve; Costa, Solange; Dusinska, Maria; Brunborg, Gunnar; Collins, Andrew Richard

2019

Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia

Liu, Yang; Zhu, Yali; Wang, Huijun; Gao, Yongqi; Sun, Jianqi; Wang, Tao; Ma, Jiehua; Yurova, Alla; Li, Fei

2019

Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model

Li, Fei; Orsolini, Yvan; Keenlyside, Noel; Shen, Mao-Lin; Counillon, Francois; Wang, Yiguo

Snow initialization has been previously investigated as a potential source of predictability atthe subseasonal‐to‐seasonal (S2S) timescale in winter and spring, through its local radiative,thermodynamical, and hydrological feedbacks. However, previous studies were conducted with low‐topmodels over short periods only. Furthermore, the potential role of the land surface‐stratosphere connectionupon the S2S predictability had remained unclear. To this end, we have carried out twin 30‐memberensembles of 2‐month (November and December) retrospective forecasts over the period 1985–2016, witheither realistic or degraded snow initialization. A high‐top version of the Norwegian Climate PredictionModel is used, based on the Whole Atmosphere Community Climate Model, to insure improved couplingwith the stratosphere. In a composite difference of high versus low initial Eurasian snow, the surfacetemperature is strongly impacted by the presence of snow, and wave activityfluxes into the stratosphere areenhanced at a 1‐month lag, leading to a weakened polar vortex. Focusing further on 7 years characterized bya strongly negative phase of the Arctic Oscillation, wefind a weak snow feedback contributing to themaintenance of the negative Arctic Oscillation. By comparing the twin forecasts, we extracted the predictiveskill increment due to realistic snow initialization. The prediction of snow itself is greatly improved, andthere is increased skill in surface temperature over snow‐covered land in thefirst 10 days, and localized skillincrements in the mid‐latitude transition regions on the southernflanks of the snow‐covered land areas, atlead times longer than 30 days.

2019

Årsrapport 2019

Solbakken, Christine Forsetlund (eds.)

NILU

2019

Increased nitrous oxide emissions in East Asia as estimated by bottom-up and top-down approaches

Pan, Naiqing; Xu, Rongting; Pan, Shufen; Thompson, Rona Louise; Canadell, Josep G.; Jackson, Robert B.; Winiwarter, Wilfried; Zhou, Feng

2019

Source Attribution of VOCs in the Canadian Oil Sands using Hierarchical Clustering

Makar, Paul; Liggio, John; Leithead, Amy; Wentzell, Jeremy; Stroud, Craig; Soares, Joana; Akingunola, Ayodeji; Zhang, Junhua; Moran, Michael; Li, Shao-Meng

2019

Global tropospheric OH concentrations in the past four decades inferred from surface network and satellite trace gas observations

Prinn, Ronald G.; Sheng, Jian-Xiong; Harth, Christina M.; Krummel, Paul B.; Lunder, Chris Rene; Muhle, Jens; Odoherty, Simon Joseph; Salameh, Peter K.; Weiss, Ray F.; Young, Dickon; Sheese, Patrick; Walker, Kaley A.

2019

Effect of filter type in ventilation systems on NO2 concentrations in classrooms

Yang, Aileen; Nikolaisen, Kristian Fredrik; Holøs, Sverre Bjørn; Thunshelle, Kari; Dauge, Franck Rene; Mysen, Mads

This study was conducted to assess how different filter types in the ventilation system affect the indoor NO2 concentrations. Measurements were carried out in two classrooms and air intakes in a primary school located in Oslo, Norway. A regular F7 particle filter and an F7 combination filter with activated charcoal lin-ing were compared. NO2 concentrations were measured for five weeks during winter 2017 in a cross-over study design to compare: 1) NO2-levels in classrooms with regular filter (RF) versus combination filter (CF); 2) indoor/outdoor ratio with regular filter versus combination filter. One-hour average concentrations are reported during operating time of the ventilation system (6:00-23:00) and during hours with high (> 40 μg/m3) outdoor NO2 concentrations. The measured average NO2 concentrations in both classrooms with an RF were significantly higher than with a CF. The median CF/RF ratios for the two class-rooms were 0.50 and 0.81 during hours with high NO2 concentrations, and 0.48 and 1.00 during the period the ventilation system was operational. During hours with high NO2 concentrations, themedian indoor/outdoor ratios for the two class-rooms with an RF were above 1.00, while the corresponding ratios with a CF were 0.78 and 0.75. Our results demonstrate that a combination filter is more efficient than a regular filter in reducing NO2 concentrations in classrooms during hours with high out-door concentrations.

2019

Monitoring of long-range transported air pollutants in Norway. Annual report 2018.

Aas, Wenche; Fiebig, Markus; Solberg, Sverre; Yttri, Karl Espen

This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2018, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. 2018 was a special year with elevated ozone levels during the whole summer season due to prolonged heat and drought.

NILU

2019

Contaminants in Atlantic walruses in Svalbard Part 1: Relationships between exposure, diet and pathogen prevalence

Scotter, Sophie Ellen; Tryland, Morten; Nymo, Ingebjørg Helena; Hanssen, Linda; Harju, Mikael; Lydersen, Christian; Kovacs, Kit M.; Klein, Jörn; Fisk, Aaron T.; Routti, Heli

This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades.

2019

Publikasjon
År
Kategori