Fant 9794 publikasjoner. Viser side 1 av 392:
American Geophysical Union (AGU)
2025
This document provides technical details and support for the implementation of air quality monitoring under the Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe (recast) (AAQD, Directive (EU) 2024/2881). It presents an overview of current knowledge and best practices, signposting to existing technical guidance on air quality monitoring and to sources of ongoing technical guidance development. This document does not formulate any legal provisions and as such, it does not have a legally binding value.
Publications Office of the European Union/European Commission. Directorate-General for Environment
2025
2025
2025
2025
This report examines the impact of air pollution from residential wood combustion on health in the Nordic countries.Residential wood combustion is a major contributor to premature deaths and health issues. The number of premature deaths is expected to decrease from 1,600 in 2019 to 1,200 by 2030, with health costs dropping from EUR 3.2 bn. to EUR 2.5 bn. This improvement is due to fewer and newer, less polluting appliances, and better energy efficiency in homes.
Two additional scenarios for 2030 reflecting national differences were evaluated.
Technology Scenario: Faster replacement of old appliances, reducing premature deaths by 190 and health costs by EUR 390 mil.
Zone-Based Scenario: Bans in densely populated areas, reducing premature deaths by 240 and health costs by EUR 510 mil.
Mitigation in densely populated areas offers greater health benefits than national-level efforts.
Nordic Council of Ministers
2025
Global greenhouse gas reconciliation 2022
n this study, we provide an update on the methodology and data used by Deng et al. (2022) to compare the national greenhouse gas inventories (NGHGIs) and atmospheric inversion model ensembles contributed by international research teams coordinated by the Global Carbon Project. The comparison framework uses transparent processing of the net ecosystem exchange fluxes of carbon dioxide (CO2) from inversions to provide estimates of terrestrial carbon stock changes over managed land that can be used to evaluate NGHGIs. For methane (CH4), and nitrous oxide (N2O), we separate anthropogenic emissions from natural sources based directly on the inversion results to make them compatible with NGHGIs. Our global harmonized NGHGI database was updated with inventory data until February 2023 by compiling data from periodical United Nations Framework Convention on Climate Change (UNFCCC) inventories by Annex I countries and sporadic and less detailed emissions reports by non-Annex I countries given by national communications and biennial update reports. For the inversion data, we used an ensemble of 22 global inversions produced for the most recent assessments of the global budgets of CO2, CH4, and N2O coordinated by the Global Carbon Project with ancillary data. The CO2 inversion ensemble in this study goes through 2021, building on our previous report from 1990 to 2019, and includes three new satellite inversions compared to the previous study and an improved managed-land mask. As a result, although significant differences exist between the CO2 inversion estimates, both satellite and in situ inversions over managed lands indicate that Russia and Canada had a larger land carbon sink in recent years than reported in their NGHGIs, while the NGHGIs reported a significant upward trend of carbon sink in Russia but a downward trend in Canada. For CH4 and N2O, the results of the new inversion ensembles are extended to 2020. Rapid increases in anthropogenic CH4 emissions were observed in developing countries, with varying levels of agreement between NGHGIs and inversion results, while developed countries showed a slowly declining or stable trend in emissions. Much denser sampling of atmospheric CO2 and CH4 concentrations by different satellites, coordinated into a global constellation, is expected in the coming years. The methodology proposed here to compare inversion results with NGHGIs can be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objectives of their pledges. The dataset constructed for this study is publicly available at https://doi.org/10.5281/zenodo.13887128 (Deng et al., 2024).
2025
2025
Poor Indoor Environmental Quality (IEQ) in schools significantly impacts students’ well-being, learning capabilities, and health. Perceived dissatisfaction rates (PD%) among students often remain high, even when indoor environmental variables appear well-controlled. This study aims to predict perceived dissatisfaction rates (PD%) across multi-domain environmental factors—thermal, acoustic, visual, and indoor air quality (IAQ)—using machine learning (ML) models. The research integrates sensor-based environmental measurements, outdoor weather data, building parameters, and 1437 student survey responses collected from three classrooms in a Norwegian school across multiple seasons. Statistical tests were used to pre-select relevant input variables, followed by the development and evaluation of multiple ML algorithms. Among the tested ML models, Random Forest (RF) demonstrated the highest predictive accuracy for PD%, outperforming multi-linear regression (MLR) and decision trees (DT), with R² values up to 0.91 for overall IEQ dissatisfaction (PDIEQ%). SHAP analysis revealed key predictors: CO₂ levels, VOCs, humidity, temperature, solar radiation, and room window orientation. IAQ, thermal comfort, and acoustic environment were the most influential factors affecting students' perceived well-being. Despite limitations as implementation in building level scale, the study demonstrates the feasibility of deploying predictive ML models under real-world constraints for improving IEQ monitoring system. The findings support practical strategies for adaptive indoor environmental management, particularly in educational settings, and provide a replicable framework for future research. Future research can expand to other climates, buildings, measurements, occupant levels, and ML training optimization.
Elsevier
2025
Road traffic externalities are an important consequence of land-use and transport interactions and may be especially induced by their inefficient combinations. In this study, we integrate land-use, transport and emission modelling tools (the LUTEm framework) to assess how suburban expansion vs. inward densification scenarios influence journey parameters, road network performance and traffic emissions. Case-study simulations for Warsaw (Poland) underscore the negative consequences of suburban sprawl development, which are hardly mitigated by additional land-use or transport interventions, such as rebalancing of population-workplace distribution or road capacity reductions. On the other side, compact city development lowers global traffic congestion and emissions, but can also raise the risks of traffic externalities in central city area unless complemented with further interventions such as improved public transport attractiveness. This study aims to enrich the understanding of how integrating the land-use development and transport interventions can ultimately influence travel parameters and reduce urban road traffic externalities.
Elsevier
2025
Potato plant disease detection: Leveraging hybrid deep learning models
Agriculture, a crucial sector for global economic development and sustainable food production, faces significant challenges in detecting and managing crop diseases. These diseases can greatly impact yield and productivity, making early and accurate detection vital, especially in staple crops like potatoes. Traditional manual methods, as well as some existing machine learning and deep learning techniques, often lack accuracy and generalizability due to factors such as variability in real-world conditions. This study proposes a novel approach to improve potato plant disease detection and identification using a hybrid deep-learning model, EfficientNetV2B3+ViT. This model combines the strengths of a Convolutional Neural Network - EfficientNetV2B3 and a Vision Transformer (ViT). It has been trained on a diverse potato leaf image dataset, the “Potato Leaf Disease Dataset”, which reflects real-world agricultural conditions. The proposed model achieved an accuracy of 85.06, representing an 11.43 improvement over the results of the previous study. These results highlight the effectiveness of the hybrid model in complex agricultural settings and its potential to improve potato plant disease detection and identification.
BioMed Central (BMC)
2025
Introduction
Per- and polyfluoroalkyl substances (PFAS) have been linked to effects on human lipid profiles, with several epidemiological studies reporting associations between specific PFAS and blood lipid concentrations. However, these associations have been inconsistent, and most studies have focused on cross-sectional analyses with limited repeated measurements.
Objective
In this study, we investigated associations between serum PFAS concentrations and major blood lipid classes over a 30-year period (1986–2016) and up to five time points. Lipids analyzed included total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG).
Methods
This study included 145 participants from The Tromsø Study, Norway, who donated plasma samples three to five times over the study period. Linear mixed-effects (LME) models assessed longitudinal associations between PFAS and lipid classes, while multiple linear regression (MLR) models were used for cross-sectional associations.
Results
LME models demonstrated positive longitudinal associations between perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and perfluorotridecanoic acid (PFTrDA) with TC. Additionally, PFOA, PFDA, PFUnDA, PFDoDA, and PFTrDA were associated with LDL-C, and PFUnDA and summed perfluorooctane sulfonate isomers (∑PFOS) with HDL-C. Cross-sectional analyses corroborated positive associations between the six PFAS compounds and TC at least three times, but the LDL-C and HDL-C associations were not confirmed. Summed perfluorooctane sulfonamide isomers (∑PFOSA) showed a negative association with LDL-C longitudinally, but this was not confirmed cross-sectionally. No associations were observed between PFAS and TG, longitudinally or cross-sectionally.
Conclusion
Concentrations of multiple PFAS were positively associated with blood lipids in longitudinal analyses, with the most consistent associations observed between six PFCA compounds and TC. These findings highlight the need for further investigation into these complex associations.
Elsevier
2025
Supervised Anomaly Detection in Univariate Time-Series Using 1D Convolutional Siamese Networks
In time-series data analysis, identifying anomalies is crucial for maintaining data integrity and ensuring accurate analyses and decision-making. Anomalies can compromise data quality and operational efficiency. The complexity of time-series data, with its temporal dependencies and potential non-stationarity, makes anomaly detection challenging but essential. Our research introduces ADSiamNet, a 1D Convolutional Neural Network-based Siamese network model for anomaly detection and rectification. ADSiamNet effectively identifies localized patterns in time-series data and smooths detected anomalies using a quantile-based technique. In tests with physical activity data from Actigraph watches and MOX2-5 sensors, ADSiamNet achieved accuracies of 98.65% and 85.0%, respectively, outperforming other supervised anomaly detection methods. The model uses a contrastive loss function to compare input sequences and adjusts network weights iteratively during training to recognize intricate patterns. Additionally, we evaluated various univariate time-series forecasting algorithms on datasets with and without anomalies. Results show that anomaly-smoothed data reduces forecasting errors, highlighting our approach’s effectiveness in enhancing time-series data analysis’s integrity and reliability. Future research will focus on multivariate time-series datasets.
IEEE (Institute of Electrical and Electronics Engineers)
2025
2025
Australia has significant sources of atmospheric methane (CH₄), driven by extensive coal and natural gas production, livestock, and large-scale fires. Accurate quantification and characterization of CH₄ emissions are critical for effective climate mitigation strategies in Australia. In this study, we employed an inverse analysis of atmospheric CH₄ observations from the GOSAT satellite and surface measurements from 2016 to 2021 to assess CH₄ emissions in Australia. The inversion process integrates anthropogenic and natural emissions as prior estimates, optimizing them with the NIES-TM-FLEXPART-variational model (NTFVAR) at a resolution of up to 0.1° × 0.1°. We validated the performance of our inverse model using data obtained from the United Nations Environment Program Methane Science (UNEP), Airborne Research Australia 2018 aircraft-based atmospheric CH₄ measurement campaigns. Compared to prior emission estimates, optimized emissions dramatically enhanced the accuracy of modeled concentrations, aligning them much better with observations. Our results indicate that the estimated inland CH4 emissions in Australia amount to 6.84 ± 0.51 Tg CH4 yr−1 and anthropogenic emissions amount to 4.20 ± 0.08 Tg CH4 yr−1, both slightly lower than the values reported in existing inventories. Moreover, our results unveil noteworthy spatiotemporal characteristics, such as upward corrections during the warm season, particularly in Southeastern Australia. During the three most severe months of the 2019–2020 bushfire season, emissions from biomass burning surged by 0.68 Tg, constituting over 71% of the total emission increase. These results highlight the importance of continuous observation and analysis of sectoral emissions, particularly near major sources, to guide targeted emission reduction strategies. The spatiotemporal characteristics identified in this study underscore the need for adaptive and region-specific approaches to CH₄ emission management in Australia.
2025
Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2023
Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2023 og trender over tid for følgende temaer:
(i) Landsrepresentativ skogovervåking;
(ii) Intensiv skogovervåking;
(iii) Overvåking av bjørkemålere i Troms og Finnmark;
(iv) Barkbilleovervåkingen 2023: økende fangster – særlig i stormrammede områder;
(v) Søk etter Ips-arter utenfor det nordvestlige hjørnet av granas utbredelse i Europa;
(vi) Askeskuddsyke;
(vii) Andre spesielle skogskader i 2023.
NIBIO
2025