Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9999 publikasjoner. Viser side 25 av 400:

Publikasjon  
År  
Kategori

Pass deg for hybelkaninene!

Nipen, Maja (intervjuobjekt); Pedersen, Elise; Norheim, Håkon Jonassen (journalister)

2024

Comet in Germ Cells = CIG

Olsen, Ann-Karin Hardie

2024

Alcoa Mosjøen. Measurements of CF4 and C2F6 emissions from Alcoa Aluminium’s smelter at Mosjøen, Norway.

Schmidbauer, Norbert; Hermansen, Ove; Lunder, Chris Rene

NILU performed a test campaign for measurements of CF4 and C2F6 for stack emissions at Alcoa Mosjøen Smelter. Time-integrated samples were taken with evacuated canisters combined with low-flow restrictors for continuous sampling periods as long as 4 weeks. The samples were analyzed at NILU with a Medusa preconcentration method combined with GC-MS SIM. As a main conclusion, time integrated sampling together with Medusa GC-MS methodology is a very precise alternative to the traditional attempts to quantify PFC-emission.

NILU

2024

The Research Software Engineering Group at UiT

Dietze, Jörn Lukas Franz; Decristoforo, Gregor; Krogseth, Ingjerd Sunde

2024

European pollen reanalysis, 1980–2022, for alder, birch, and olive

Sofiev, Mikhail; Palamarchuk, Julia; Kouznetsov, Rostislav; Abramidze, Tamuna; Adams-Groom, Beverley; Antunes, Célia M.; Ariño, Arturo; Bastl, Maximillan; Belmonte, Jordina; Berger, Uwe Edwin; Bonini, Maira; Bruffaerts, Nicolas; Buters, Jeroen T.M.; Cariñanos, Paloma; Celenk, Sevcan; Ceriotti, Valentina; Charalampopoulos, Athanasios; Clewlow, Yolanda; Clot, Bernhard; Dahl, Aslog; Damialis, Athanasios; Linares, Concepción De; Weger, Letty A de; Dirr, Lukas; Ekebom, Agneta; Fatahi, Yalda; González, Maria Fernández; González, Delia Fernández; Fernández-Rodríguez, Santiago; Galán, Carmen; Gedda, Björn; Gehrig, Regula; Bernstein, Carmi Geller; Roldan, Nestor Gonzalez; Grewling, Łukasz; Hajkova, Lenka; Hanninen, Risto; Hentges, François; Jantunen, Juha; Kadantsev, Evgeny; Kasprzyk, Idalia; Kloster, Mathilde; Kluska, Katarzyna; Koenders, Mieke; Lafférsová, Janka; Leru, Poliana Mihaela; Lipiec, Agnieszka; Louna-Korteniemi, Maria; Magyar, Donat; Majkowska-Wojciechowska, Barbara; Mäkelä, Mika; Mitrovic, Mirjana; Myszkowska, Dorota; Oliver, Gilles; Östensson, Pia; Pérez-Badia, Rosa; Piotrowska-Weryszko, Krystyna; Prank, Marje; Przedpelska-Wasowicz, Ewa Maria; Pätsi, Sanna; Rodríguez-Rajo, F. Javier; Ramfjord, Hallvard; Rapiejko, Joanna; Rodinkova, Victoria; Rojo, Jesús; Ruiz-Valenzuela, Luis; Rybnicek, Ondrej; Saarto, Annika; Sauliene, Ingrida; Seliger, Andreja Kofol; Severova, Elena; Shalaboda, Valentina; Sikoparija, Branko; Siljamo, Pilvi; Soares, Joana; Sozinova, Olga; Stangel, Andreas; Stjepanović, Barbara; Teinemaa, Erik; Tyuryakov, Svjatoslav; Trigo, M. Mar; Uppstu, Andreas; Vill, Mart; Vira, Julius; Visez, Nicolas; Vitikainen, Tiina; Vokou, Despoina; Weryszko-Chmielewska, Elzbieta; Karppinen, Ari

The dataset presents a 43 year-long reanalysis of pollen seasons for three major allergenic genera of trees in Europe: alder (Alnus), birch (Betula), and olive (Olea). Driven by the meteorological reanalysis ERA5, the atmospheric composition model SILAM predicted the flowering period and calculated the Europe-wide dispersion pattern of pollen for the years 1980–2022. The model applied an extended 4-dimensional variational data assimilation of in-situ observations of aerobiological networks in 34 European countries to reproduce the inter-annual variability and trends of pollen production and distribution. The control variable of the assimilation procedure was the total pollen release during each flowering season, implemented as an annual correction factor to the mean pollen production. The dataset was designed as an input to studies on climate-induced and anthropogenically driven changes in the European vegetation, biodiversity monitoring, bioaerosol modelling and assessment, as well as, in combination with intra-seasonal observations, for health-related applications.

2024

ECOMAP - Exploitation of ongoing and future Copernicus Missions for Atmospheric Applications

Fjæraa, Ann Mari; Stebel, Kerstin; Schneider, Philipp; Sollum, Espen; Ytre-Eide, Martin Album

2024

Climate Monitoring with observations of Fire Radiative Power

Kaiser, Johannes; Parrington, Mark; Tomaso, Enza Di; Liu, Zixia; Stebel, Kerstin; Fjæraa, Ann Mari; Schneider, Philipp

2024

Towards a harmonized approach for atmospheric monitoring of chemicals of emerging concern (CECs). Workshop 8-10 November 2023. NILU, Kjeller, Norway

Aas, Wenche; Davie-Martin, Cleo Lisa; Halvorsen, Helene Lunder; Herzke, Dorte; Hartz, William Frederik; Hung, Hayley; Mayer, Ludovic; Nerentorp, Michelle; Nipen, Maja; Rüdiger, Julian; Tinel, Liselotte; Vorkamp, Katrin

This report summaries the outcome of a workshop focused on standardizing monitoring strategies for Chemicals of Emerging Concern (CECs), including PFAS, flame retardants, chlorinated paraffins, siloxanes, and microplastics. Key recommendations include harmonised sampling methods, expanding the monitoring programs, conducting measurement campaigns, and enhancing analysis techniques.

NILU

2024

Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)

Thompson, Rona Louise; Montzka, Stephen A.; Vollmer, Martin K.; Arduini, Jgor; Crotwell, Molly; Krummel, Paul B.; Lunder, Chris Rene; Mühle, Jens; O'doherty, Simon; Prinn, Ronald G.; Reimann, Stefan; Vimont, Isaac; Wang, Hsiang; Weiss, Ray F.; Young, Dickon

The hydroxyl radical (OH) largely determines the atmosphere's oxidative capacity and, thus, the lifetimes of numerous trace gases, including methane (CH4). Hitherto, observation-based approaches for estimating the atmospheric oxidative capacity have primarily relied on using methyl chloroform (MCF), but as the atmospheric abundance of MCF has declined, the uncertainties associated with this method have increased. In this study, we examine the use of five hydrofluorocarbons (HFCs) (HFC-134a, HFC-152a, HFC-365mfc, HFC-245fa, and HFC-32) in multi-species inversions, which assimilate three HFCs simultaneously, as an alternative method to estimate atmospheric OH. We find robust estimates of OH regardless of which combination of the three HFCs are used in the inversions. Our results show that OH has remained fairly stable during our study period from 2004 to 2021, with variations of

2024

Limits to graphite supply in a transition to a post-fossil society

Barre, Francis Isidore; Billy, Romain Guillaume; Lopez, Fernando Aguilar; Mueller, Daniel Beat

Transitioning to electric vehicles (EVs) powered by lithium-ion batteries (LIBs) aims at reducing emissions in the transportation sector, thereby decreasing fuel oil use and crude oil extraction. Yet, synthetic graphite, a crucial anode material for LIBs, is produced from needle coke, a byproduct of oil refining. This dependency could lead to bottlenecks in battery anode production. We found no obvious supply constraints for synthetic graphite in slow electrification scenarios based on different International Energy Agency scenarios. In contrast, net zero scenarios reveal drastic limitations in synthetic graphite supply, due to fast electrification and declining needle coke production. Natural graphite can mitigate supply limitations but faces environmental concerns, long development time and geopolitical concerns. Securing graphite supply while reaching the net zero goals requires comprehensive strategies combining (1) systematic graphite recycling, (2) overcoming current technical challenges, and (3) behavioral shifts towards reduced vehicle ownership and smaller vehicles.

2024

Årsrapport 2023. Nasjonalt referanselaboratorium for luftkvalitetsmålinger.

Marsteen, Leif; Johnsrud, Mona; Hak, Claudia; Dauge, Franck Rene; Tørnkvist, Kjersti Karlsen

Denne rapporten oppsummerer oppgavene til Nasjonalt referanselaboratorium for luftkvalitetsmålinger (NRL), delkontrakt 1b, for året 2023. Dette er første årsrapport etter at ny kontrakt trådte i kraft 1. desember 2022.

NILU

2024

Ammonia emission estimates using CrIS satellite observations over Europe

Ding, Jieying; A, Ronald van der; Eskes, Henk; Dammers, Enrico; Shephard, Mark; Kruit, Roy Wichink; Guevara, Marc; Tarrasón, Leonor

Over the past century, ammonia (NH3) emissions have increased with the growth of livestock and fertilizer usage. The abundant NH3 emissions lead to secondary fine particulate matter (PM2.5) pollution, climate change, and a reduction in biodiversity, and they affect human health. Up-to-date and spatially and temporally resolved information on NH3 emissions is essential to better quantify their impact. In this study we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) algorithm to NH3 observations from the Cross-track Infrared Sounder (CrIS) to estimate NH3 emissions. Because NH3 in the atmosphere is influenced by nitrogen oxides (NOx), we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 on a spatial resolution of 0.2°×0.2° using daily observations from both CrIS and the TROPOspheric Monitoring Instrument (TROPOMI; on the Sentinel-5 Precursor (S5P) satellite). Due to the limited number of daily satellite observations of NH3, monthly emissions of NH3 are reported. The total NH3 emissions derived from observations are about 8 Tg yr−1, with a precision of about 5 %–17 % per grid cell per year over the European domain (35–55° N, 10° W–30° E). The comparison of the satellite-derived NH3 emissions from DECSO with independent bottom-up inventories and in situ observations indicates a consistency in terms of magnitude on the country totals, with the results also being comparable regarding the temporal and spatial distributions. The validation of DECSO over Europe implies that we can use DECSO to quickly derive fairly accurate monthly emissions of NH3 over regions with limited local information on NH3 emissions.

2024

Comprehensive characterization of European house dust contaminants: Concentrations and profiles, geographical variability, and implications for chemical regulation and health risk

Haglund, Peter; Alygizakis, Nikiforos A.; Covaci, Adrian; Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Rostkowski, Pawel; Albinet, Alexandre; Alirai, Sylvana; Aurich, Dagny; Bieber, Stefan; Ballesteros-Gómez, Ana; Brennan, Amanda; Budzinski, Hélène; Castro, Gabriela; Ouden, Fatima den; Dévier, Marie-Hélène; Dulio, Valeria; Feng, Yong-Lai; Gabriel, Marta; Gallampois, Christine; Garcia-Vara, Manuel; Giovanoulis, Georgios; Harrad, Stuart; Jacobs, Griet; Jobst, Karl J.; Kaserzon, Sarit; Kumirska, Jolanta; Lestremau, Francois; Lambropoulou, Dimitra; Letzel, Thomas; Alda, Miren López de; Nipen, Maja; Oswald, Peter; Poma, Giulia; Přibylová, Petra; Price, Elliott J.; Raffy, Gaëlle; Schulze, Bastian; Schymanski, Emma L.; Senk, Petr; Wei, Si; Slobodnik, Jaroslav; Andújar, Begoña Talavera; Täubel, Martin; Thomaidis, Nikolaos S.; Wang, Thanh; Wang, Xianyu

2024

How does suburban sprawl vs. compact city development influence urban transport performance and its emissions?

Drabicki, Arkadiusz; Lopez-Aparicio, Susana; Grythe, Henrik; Chwastek, Konrad; Górska, Lidia

2024

Derfor er det så mye metan i atmosfæren nå

Platt, Stephen Matthew (intervjuobjekt); Aukrust, Øyvind (journalist)

2024

Two Decades of Urban Sprawl Development in Polish Cities – Modelling Transport and Environmental Implications

Drabicki, Arkadiusz; Lopez-Aparicio, Susana; Grythe, Henrik; Kierpiec, Urszula; Tobola, Kamila; Kud, Bartosz; Chwastek, Konrad

2024

Energetic particle precipitation influences global secondary ozone distribution

Jia, Jia; Murberg, Lise Eder; Løvset, Tiril; Orsolini, Yvan; Espy, Patrick Joseph; Zeller, Lilou C. G.; Salinas, Cornelius Csar Jude H.; Lee, Jae N.; Wu, Dong; Zhang, Jiarong

The secondary ozone layer is a global peak in ozone abundance in the upper mesosphere-lower thermosphere (UMLT) around 90-95 km. The effect of energetic particle precipitation (EPP) from geomagnetic processes on this UMLT ozone remains largely unexplored. In this research we investigated how the secondary ozone responds to EPP using satellite observations. In addition, the residual Mean Meridional Circulation (MMC) derived from model simulations and the atomic oxygen [O], atomic hydrogen [H], temperature measurements from satellite observations were used to characterise the residual circulation changes during EPP events. We report regions of secondary ozone enhancement or deficit across low, mid and high latitudes as a result of global circulation and transport changes induced by EPP. The results are supported by a sensitivity test using an empirical model.

2024

Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures

Ezker, Idoia Beloki; Yuan, Bo; Bohlin-Nizzetto, Pernilla; Borgen, Anders; Wang, Thanh

Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10–13), medium-chain (MCCPs, C14–17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs–C10–13 are found to be mostly present in the gas phase, PCAs–C14–17 in particulate matter and organic films, and PCAs–C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.

2024

Publikasjon
År
Kategori