Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10002 publikasjoner. Viser side 61 av 401:

Publikasjon  
År  
Kategori

Microplastics in Norwegian coastal areas, rivers, lakes and air (MIKRONOR1)

van Bavel, Bert; Lusher, Amy Lorraine; Consolaro, Chiara; Hjelset, Sverre; Singdahl-Larsen, Cecilie; Buenaventura, Nina Tuscano; Röhler, Laura; Pakhomova, Svetlana; Lund, Espen; Eidsvoll, David; Herzke, Dorte; Bråte, Inger Lise Nerland

Norsk institutt for vannforskning

2022

Development of a Novel Framework for the Assessment and Improvement of Climate Adaptation and Mitigation Actions in Europe

Sæbø, Arne; Rodriguez, Divina Gracia P.; Gioli, Beniamino; Tuomasjukka, Diana; Liu, Hai Ying; Pastore, Maria Chiara; Fabio, Salbitano; Bogetoft, Peter; Konijnendijk van den Bosch, Cecil

Frontiers Media S.A.

2022

Plastic ingestion and associated additives in Faroe Islands chicks of the Northern Fulmar Fulmarus glacialis

Collard, France; Leconte, Simon; Danielsen, Johannis; Halsband, Claudia; Herzke, Dorte; Harju, Mikael; Tulatz, Felix; Gabrielsen, Geir Wing; Tarroux, Arnaud

Northern Fulmars (Fulmarus glacialis) are a pelagic seabird species distributed at northern and polar latitudes. They are often used as an indicator of plastic pollution in the North Sea region, but data are lacking from higher latitudes, especially when it comes to chicks. Here, we investigated amounts of ingested plastic and their characteristics in fulmar chicks from the Faroe Islands. Plastic particles (1 mm) in chicks of two age classes were searched using a digestion method with KOH. In addition, to evaluate if additive tissue burden reflects plastic ingestion, we measured liver tissue concentrations of two pollutant classes associated with plastic materials: polybrominated diphenyl ethers (PBDEs) and several dechloranes, using gas chromatography with high-resolution mass spectrometry. The most common shape was hard fragment (81%) and the most common polymer was polyethylene (73%). Plastic contamination did not differ between either age class, and we found no correlation between neither the amount and mass of plastic particles and the concentration of additives. After comparison with previous studies on adult fulmars, we do not recommend using chicks for biomonitoring adults because chicks seem to ingest more plastics than adults.

2022

State of the Climate in 2021: 5. The Arctic

Thoman, Richard L.; Druckenmiller, Matthew L.; Moon, Twila A.; Andreassen, LM.; Baker, E.; Ballinger, Thomas J.; Berner, L.T.; Bernhard, Germar H.; Bhatt, U.S.; Bjerke, Jarle W.; Boisvert, Linette N.; Box, Jason E.; Brettschneider, B.; Burgess, D.; Butler, Amy H.; Cappelen, John; Christiansen, Hanne H.; Decharme, Bertrand; Derksen, C.; Divine, Dmitry V; Drozdov, D. S.; Elias, Chereque A.; Epstein, Howard E.; Farrell, Sinead L.; Fausto, Robert S.; Fettweis, Xavier; Fioletov, Vitali E.; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Goetz, Scott J.; Grooß, Jens-Uwe; Haas, Christian; Hanna, Edward; Hanssen-Bauer, Inger; Heijmans, M. M. P. D.; Hendricks, Stefan; Ialongo, Iolanda; Isaksen, Ketil; Jensen, C.D.; Johnsen, Bjørn; Kaleschke, L.; Kholodov, A. L.; Kim, Seong-Joong; Kohler, Jack; Korsgaard, Niels J.; Labe, Zachary; Lakkala, Kaisa; Lara, Mark J.; Lee, Simon H.; Loomis, Bryant; Luks, B.; Luojus, K; Macander, Matthew J.; Magnússon, R. Í.; Malkova, GV; Mankoff, Kenneth D.; Manney, Gloria L.; Meier, Walter N.; Mote, Thomas; Mudryk, Lawrence; Müller, Rolf; Nyland, K. E.; Overland, James E.; Pálsson, Finnur; Park, T.; Parker, C.L.; Perovich, Don; Petty, Alek; Phoenix, Gareth K.; Pinzon, J. E.; Ricker, Robert; Romanovsky, Vladimir E.; Serbin, S. P.; Sheffield, G.; Shiklomanov, Nikolai I; Smith, Sharon L.; Stafford, K.M.; Steer, Adam; Streletskiy, Dmitry A.; Svendby, Tove Marit; Tedesco, Marco; Thomson, L.; Thorsteinsson, T; Tian-Kunze, X.; Timmermans, Mary-Louise; Tømmervik, Hans; Tschudi, Mark; Tucker, C.J.; Walker, Donald A.; Walsh, John E.; Wang, Muyin; Webster, Melinda; Wehrlé, Adrien; Winton, Øyvind; Wolken, G; Wood, K.; Wouters, B.; Yang, D.

American Meteorological Society

2022

Enhanced electrochemical degradation of acetaminophen in aqueous environments at oxygen-activated carbon felt anodes

Jakobczyk, Pawel; Skowierzak, Grzegorz; Kaczmarzyk, Iwona; Nadolska, Malgorzata; Wcislo, Anna; Lota, Katarzyna; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel; Lota, Gregorz; Ryl, Jacek

2022

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Orsolini, Yvan J.; Guttu, Sigmund; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

2022

Risk-benefit assessment of sunscreen - Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food, and Cosmetics of the Norwegian Scientific Committee for Food and Environment

Bruzell, Ellen Merete; Carlsen, Monica Hauger; Caspersen, Ida Henriette; Denison, Eva Marie-Louise; Devold, Tove Gulbrandsen; Granum, Berit Brunstad; Mathisen, Gro Haarklou; Rundén-Pran, Elise; Rasinger, Josef; Rohloff, Jens; Svendsen, Camilla; Husøy, Trine

VKM has performed a risk-benefit assessment of sunscreen use and six UV filters. This task
was undertaken on the initiative of a VKM Panel in response to the apparent paradox
between the need for protective measures, such as use of sunscreens, to reduce Norway’s
high incidence and mortality of skin cancer and a consumer concern for the safety of
sunscreens. Concerns include safety of ingredients and sunscreens’ effect on vitamin D
synthesis. Sunscreen products are legally regulated as cosmetic products in the EU, and only
approved UV filters up to a maximum determined concentration are allowed in the ready-foruse preparation.
VKM used a systematic approach to assess risks and benefits of sunscreen use and risks of
six selected UV filters: bis-ethyl-hexyloxyphenol methoxyphenyl triazine (BEMT), butyl
methoxydibenzoyl methane (BMDBM), 2-ethylhexyl salicylate (EHS), ethylhexyl triazone
(EHT), octocrylene (OC), and titanium dioxide in nanoform (NP-TiO2). These UV filters are
among the most frequently used in sunscreens on the Norwegian market. Sunscreen sprays
and lip products were not included. Scientific publications and reports up to 2020 were
retrieved to assess adverse and protective effects of sunscreen and adverse effects of UV
filters. We assessed risk of bias in the studies and evidence for health outcomes with the aid
of validity tools, and estimated exposure to each UV filter using probabilistic methods.
The evidence showed that sunscreens were beneficial in protecting against certain skin
cancers. Insufficient evidence precluded determination of the hazard associated with
sunscreen use.
The UV filters occurred in concentrations similar to or below the limits set in the EU
cosmetics regulative. VKM considered that little to no hazard was associated with use of the
six evaluated UV filters.
VKM concludes that the risks related to use of the six evaluated UV filters are negligible since
the real-life use of these UV filters is several-fold lower than the amounts that may cause
any adverse health effect. The evidence for harmful health effects of sunscreens is
insufficient to determine risk. Sunscreen use protects against certain skin cancers and is
beneficial for the general Norwegian population.

2022

Modelling the influence of climate change on contaminant exposure in three key seabird species in the European Arctic

Skogeng, Lovise Pedersen; Eulaers, Igor; Blévin, Pierre; Sagerup, Kjetil; Bustnes, Jan Ove; Gabrielsen, Geir Wing; Eckhardt, Sabine; Wania, Frank; Breivik, Knut; Sunde Krogseth, Ingjerd

2022

Cyanobakterier og cyanotoksiner i norske drikkevannskilder - (VKM)

Samdal, Ingunn Anita; Ballot, Andreas Hendrik; Boahene, Nana Yaa; Eriksen, Gunnar Sundstøl; Flø, Daniel; Haande, Sigrid; Svendsen, Camilla; Amlund, Heidi; Beyer, Jonny; Brantsæter, Anne Lise; Bremer, Sara; Mariussen, Espen; Thomsen, Cathrine; Knutsen, Helle Katrine

2021

Global emissions of atmospheric microplastics revealed from inverse modelling

Evangeliou, Nikolaos; Tichy, Ondrej; Eckhardt, Sabine; Brahney, Janice

2021

Effects of extreme meteorological conditions in 2018 on European methane emissions estimated using atmospheric inversions

Thompson, Rona Louise; Zwaaftink, Christine Groot; Brunner, D; Tsuruta, Aki; Aalto, T; Raivonen, M; Crippa, M.; Solazzo, Efisio; Guizzardi, D.; Regnier, P.; Maisonnier, M.

The effect of the 2018 extreme meteorological conditions in Europe on methane (CH4) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005–2018. For most of Europe, we find no anomaly in 2018 compared to the 2005–2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September–October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005–2017 mean. These results indicate that CH4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005–2018 was small, and there was negligible impact on the annual CH4 emissions in 2018 despite the extreme meteorological conditions.

This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.

2021

Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

Rose, Clemence; Coen, Martine Collaud; Andrews, Elisabeth; Lin, Yong; Bossert, Isaline; Myhre, Cathrine Lund; Tuch, Thomas; Wiedensohler, Alfred; Fiebig, Markus; Aalto, Pasi; Alastuey, Andrés; Alonso-Blanco, Elisabeth; Andrade, Marcos; Artiñano, Begoña; Arsov, Todor; Baltensprenger, Urs; Bastian, Susanne; Bath, Olaf; Beukes, Johan Paul; Brem, Benjamin T.; Bukowiecki, Nicolas; Casquero-Vera, Juan Andres; Conil, Sébastien; Eleftheriadis, Konstantinos; Favez, Olivier; Flentje, Harald; Gini, Maria I.; Gómez-Moreno, Francisco Javier; Gysel-Beer, Martin; Hallar, Anna Gannet; Kalapov, Ivo; Kalivitis, Nikos; Kasper-Giebl, Anne; Keywood, Melita; Kim, Jeong Eun; Kim, Sang-Woo; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lin, Neng-Huei; Lyamani, Hassan; Marinoni, Angela; Santos, Sebastiao Martins Dos; Mayol-Bracero, Olga; Meinhardt, Frank; Merkel, Maik; Metzger, Jean-Marc; Mihalopoulos, Nikolaos; Ondráček, Jakub; Pandolfi, Marco; Pérez, Noemi; Petäjä, Tuukka; Petit, Jean-Eudes; Picard, David; Pichon, Jean-Marc; Pont, Veronique; Putaud, Jean-Philippe; Reisen, Fabienne; Sellegri, Karine; Sharma, Sangeeta; Schauer, Gerhard; Sheridan, Patrick; Sherman, James Patrick; Schwerin, Andreas; Sohmer, Ralf; Sorribas, Mar; Sun, Junying; Tulet, Pierre; Vakkari, Ville; Zyl, Pieter Gideon van; Velarde, Fernando; Villani, Paolo; Vratolis, Stergios; Wagner, Zdenek; Wang, Sheng-Hsiang; Weinhold, Kay; Weller, Rolf; Yela, Margarita; Ždímal, Vladimir; Laj, Paolo G.

Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle.

Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot.

Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.

2021

This Fjord Shows Even Small Populations Create Giant Microfiber Pollution

Herzke, Dorte; Halsband, Claudia (intervjuobjekter); Hester, Jessica Leigh (journalist)

2021

Beregning av luftkvalitet ved Bjørnheimveien 26

Tønnesen, Dag Arild; Weydahl, Torleif

NILU har blitt engasjert av Prem Partners II A/S for å vurdere utbredelse av luftsoner for dagens situasjon og en framtidig situasjon med foreslått boligblokk i Bjørnheimveien 26. Det er anvendt en Gaussisk spredningsmodell for linjekilder (Hiway-2). Når det tas hensyn til at E6 går på bru ved det aktuelle området, viser beregningene et vesentlig lavere konsentrasjonsnivå og dermed mindre utbredelse av rød og gul luftsone på bakkenivå. Videre viser beregningene at skjermingseffekten for eksisterende bebyggelse av en ny bygning er marginal. Dersom de samme forutsetningene om høyde av veg og høyde av terreng legges til grunn, viser beregningene god overenstemmelse med eksisterende luftsonekart.

NILU

2021

Changes in black carbon emissions over Europe due to COVID-19 lockdowns

Evangeliou, Nikolaos; Platt, Stephen Matthew; Eckhardt, Sabine; Myhre, Cathrine Lund; Laj, Paolo; Alados-Arboledas, Lucas; Backman, John; Brem, Benjamin T.; Fiebig, Markus; Flentje, Harald; Marinoni, Angela; Pandolfi, Marco; Yus-Diez, Jesus; Prats, Natalia; Putaud, Jean-Philippe; Sellegri, Karine; Sorribas, Mar; Eleftheriadis, Konstantinos; Vratolis, Stergios; Wiedensohler, Alfred; Stohl, Andreas

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.

2021

Appropriate Assimilation Methods for Air Quality Prediction and Pollutant Emission Inversion. An Urban Data Assimilation Systems Report.

Hamer, Paul David; Walker, Sam-Erik; Schneider, Philipp

This report presents a review of data assimilation methods applicable to air quality. In the introduction, we first describe a brief history of data assimilation method development in the context of numerical weather prediction (NWP), and then we highlight key differences when applying data assimilation methods to air quality prediction from NWP applications. Based on these differences, we outline a set of key requirements for data assimilation when applied to air quality. Following this, we review the available data assimilation algorithms and attempt to identify suitable data assimilation methods that could be applied with air quality models. This review and its findings form the basis of the developments to be carried out in the Urban Data Assimilation Systems project.

NILU

2021

Kartlegging av ventilasjonstårnenes evne til å redusere forurensning fra dagsonen. Måling av luftforurensning i E18 Operatunnelen og forslag til nytt styringsregime for ventilasjonstårnene.

Hak, Claudia; Antonsen, Ørjan; Wessel, Martine; Vogt, Matthias; Nilsen, Anne-Cathrine

NILU – Norsk institutt for luftforskning og Ingenia AS har på oppdrag fra Statens vegvesen kartlagt effekten ventilasjonstårnene i Ekeberg- og Bjørvikatunnelen har med hensyn til å redusere luftforurensning fra dagsonen på Sørenga. Prosjektet besto av et omfangsrikt måleprogram i og rundt Operatunnelen i Bjørvika, en vurdering av ventilasjonstårnenes effekt basert på målingene og forslag til prinsipper for et nytt styringsregime.
Drift av ventilasjonstårnene ble funnet å ha en tydelig effekt på PM10- og NO2-konsentrasjonen i dagsonen og på bakkenivå utenfor dagsonen fra trinn 3 (av 4). Forslaget til nytt styringsregime fokuserer på ventilasjonstårndrift i piggdekksesongen og avhengighet av ytre forhold.

NILU

2021

10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models

Evangeliou, Nikolaos; Balkanski, Yves; Eckhardt, Sabine; Cozic, Anne; Damme, Martin Van; Coheur, Pierre-François; Clarisse, Lieven; Shephard, Mark W.; Cady-Pereira, Karen; Hauglustaine, Didier

In recent years, ammonia emissions have been continuously increasing, being almost 4 times higher than in the 20th century. Although an important species, as its use as a fertilizer sustains human living, ammonia has major consequences for both humans and the environment because of its reactive gas-phase chemistry that makes it easily convertible to particles. Despite its pronounced importance, ammonia emissions are highly uncertain in most emission inventories. However, the great development of satellite remote sensing nowadays provides the opportunity for more targeted research on constraining ammonia emissions. Here, we used satellite measurements to calculate global ammonia emissions over the period 2008–2017. Then, the calculated ammonia emissions were fed to a chemistry transport model, and ammonia concentrations were simulated for the period 2008–2017.

The simulated concentrations of ammonia were compared with ground measurements from Europe, North America and Southeastern Asia, as well as with satellite measurements. The satellite-constrained ammonia emissions represent global concentrations more accurately than state-of-the-art emissions. Calculated fluxes in the North China Plain were seen to be more increased after 2015, which is not due to emission changes but due to changes in sulfate emissions that resulted in less ammonia neutralization and hence in larger atmospheric loads. Emissions over Europe were also twice as much as those in traditional datasets with dominant sources being industrial and agricultural applications. Four hot-spot regions of high ammonia emissions were seen in North America, which are characterized by high agricultural activity, such as animal breeding, animal farms and agricultural practices. South America is dominated by ammonia emissions from biomass burning, which causes a strong seasonality. In Southeastern Asia, ammonia emissions from fertilizer plants in China, Pakistan, India and Indonesia are the most important, while a strong seasonality was observed with a spring and late summer peak due to rice and wheat cultivation. Measurements of ammonia surface concentrations were better reproduced with satellite-constrained emissions, such as measurements from CrIS (Cross-track Infrared Sounder).

2021

Ozone measurements 2019

Hjellbrekke, Anne-Gunn; Solberg, Sverre

NILU

2021

The who, why and where of Norway's CO2 emissions from tourist travel

Grythe, Henrik; Lopez-Aparicio, Susana

We present emissions from Norway’s tourist travel by the available transport modes, i.e., aviation, maritime (ferries and cruises) and land-based transport (road and railways). Our study includes detailed information on both domestic and international tourist travel within, from and to Norway. We have coupled statistics from several large surveys with detailed emission data to allow us to separate the purpose of the travel (holiday or business).

Total transport emissions for tourists in 2018 were estimated to be 8 530 kt, equivalent to 19% of the reported Norwegian national emissions. Of these emissions, international tourists visiting Norway were responsible for 3 273 kt , whereas travel by Norwegians accounted for 4 875 kt , most of which occur outside Norway’s reporting obligations. Aviation and maritime transport were found to be the largest emission sources, responsible for 71% and 21% of total emissions, respectively. The reduction due to the COVID-19 pandemic was approximately 60% in 2020, and was sustained throughout the year.

Our study shows that officially reported emissions, as limited to the countries territory, are not suitable for accurate evaluation of transport emissions related to tourism. A consumer or tourist-based calculation gives a marked redistribution of emission responsibility. Our results indicate that emissions from Norwegian residents travelling abroad are 1 602 kt higher than those from tourists coming to Norway. This is driven by frequent trips to popular tourist destinations such as Spain, Thailand, Turkey and Greece. Globally consumer based calculations would shift the responsibility of emissions by tourists to the large wealthy nations, with the most international tourists. The understanding of emission distributed by population group or market support in addition the developing of marketing strategies to attract low emission tourist markets and create awareness among the nations with higher shares of international tourist.

2021

The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018

Petrescu, Ana Maria Roxana; McGrath, Matthew J; Andrew, Robbie; Peylin, Philippe; Peters, Glen Philip; Ciais, Philippe; Broquet, Grégoire; Tubiello, Francesco N.; Gerbig, Christoph; Pongratz, Julia; Janssens-Maenhout, Greet; Grassi, Giacomo; Nabuurs, Gert-Jan; Regnier, Pierre; Lauerwald, Ronny; Kuhnert, Matthias; Balkovic, Juraj; Schelhaas, Mart-Jan; Gon, Hugo A.C. Denier van der; Solazzo, Efisio; Qiu, Chunjing; Pilli, Roberto; Konovalov, Igor B.; Houghton, Richard A.; Günther, Dirk; Perugini, Lucia; Crippa, Monica; Ganzenmüller, Raphael; Luijkx, Ingrid T.; Smith, Pete; Munassar, Saqr; Thompson, Rona Louise; Conchedda, Giulia; Monteil, Guillaume; Scholze, Marko; Karstens, Ute; Brockmann, Patrick; Dolman, Albertus Johannes

Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990–2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011–2015, the CO2 land sources and sinks from NGHGI estimates report −90 Tg C yr−1 ±  30 Tg C yr−1 while all other BU approaches report a mean sink of −98 Tg C yr−1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr−1 ± 400 Tg C yr−1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of “CO2 flux” obtained from different approaches. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4626578 (Petrescu et al., 2020a).

2021

Heavy metals and POPs: Pollution assessment of toxic substances on regional and global scales

Ilyin, Ilia; Batrakova, Nadezhda; Gusev, Aleksey; Kleimenov, Mikhail; Rozovskaya, Olga; Shatalov, Victor; Strizhkina, Irina; Travnikov, Oleg; Breivik, Knut; Halvorsen, Helene Lunder; Bohlin-Nizzetto, Pernilla; Pfaffhuber, Katrine Aspmo; Aas, Wenche; Mareckova, Katarina; Poupa, Stephan; Wankmüller, Robert; Ullrich, Bernhard; Degorska, Anna

Meteorological Synthesizing Centre - East

2021

Characterization of the atmospheric environment during extreme precipitation events associated with atmospheric rivers in Norway - Seasonal and regional aspects

Michel, Clio; Sorteberg, Asgeir; Eckhardt, Sabine; Weijenborg, Christian; Stohl, Andreas; Cassiani, Massimo

Extreme precipitation events in Norway in all seasons are often linked to atmospheric rivers (AR). We show that during the period 1979–2018 78.5% of the daily extreme precipitation events in Southwestern Norway are linked to ARs, this percentage decreasing to 59% in the more northern coastal regions and ~40% in the inland regions. The association of extreme precipitation with AR occurs most often in fall for the coastal areas and in summer inland. All Norwegian regions experience stronger winds and 1–2°C increase of the temperature at 850 hPa during AR events compared to the climatology, the extreme precipitation largely contributing to the wet climatology (only considering rainy days) in Norway but also in Denmark and Sweden when the rest of Europe is dry. A cyclone is found nearby the AR landfall point in 70% of the cases. When the cyclone is located over the British Isles, as it is typically the case when ARs reach Southeastern Norway, it is associated with cyclonic Rossby wave breaking whereas when the ARs reach more northern regions, anticyclonic wave breaking occurs over Northern Europe. Cyclone-centered composites show that the mean sea level pressure is not significantly different between the eight Norwegian regions, that baroclinic interaction can still take place although the cyclone is close to its decay phase and that the maximum precipitation occurs ahead of the AR. Lagrangian air parcel tracking shows that moisture uptake mainly occurs over the North Atlantic for the coastal regions with an additional source over Europe for the more eastern and inland regions.

2021

Publikasjon
År
Kategori