Fant 9758 publikasjoner. Viser side 63 av 391:
Main sources controlling atmospheric burdens of persistent organic pollutants on a national scale
National long-term monitoring programs on persistent organic pollutants (POPs) in background air have traditionally relied on active air sampling techniques. Due to limited spatial coverage of active air samplers, questions remain (i) whether active air sampler monitoring sites are representative for atmospheric burdens within the larger geographical area targeted by the monitoring programs, and thus (ii) if the main sources affecting POPs in background air across a nation are understood. The main objective of this study was to explore the utility of spatial and temporal trends in concert with multiple modelling approaches to understand the main sources affecting polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in background air across a nation. For this purpose, a comprehensive campaign was carried out in summer 2016, measuring POPs in background air across Norway using passive air sampling. Results were compared to a similar campaign in 2006 to assess possible changes over one decade. We furthermore used the Global EMEP Multi-media Modeling System (GLEMOS) and the Flexible Particle dispersion model (FLEXPART) to predict and evaluate the relative importance of primary emissions, secondary emissions, long-range atmospheric transport (LRAT) and national emissions in controlling atmospheric burdens of PCB-153 on a national scale. The concentrations in air of both PCBs and most of the targeted OCPs were generally low, with the exception of hexachlorobenzene (HCB). A limited spatial variability for all POPs in this study, together with predictions by both models, suggest that LRAT dominates atmospheric burdens across Norway. Model predictions by the GLEMOS model, as well as measured isomeric ratios, further suggest that LRAT of some POPs are dictated by secondary emissions. Our results illustrate the utility of combining observations and mechanistic modelling approaches to help identify the main factors affecting atmospheric burdens of POPs across a nation, which, in turn, may be used to inform both national monitoring and control strategies.
Academic Press
2021
Microfibers (MF) are one of the major classes of microplastic found in the marine environment on a global scale. Very little is known about how they move and distribute from point sources such as wastewater effluents into the ocean. We chose Adventfjorden near the settlement of Longyearbyen on the Arctic Svalbard archipelago as a case study to investigate how microfibers emitted with untreated wastewater will distribute in the fjord, both on a spatial and temporal scale. Fiber abundance in the effluent was estimated from wastewater samples taken during two one-week periods in June and September 2017. Large emissions of MFs were detected, similar in scale to a modern WWTP serving 1.3 million people and providing evidence of the importance of untreated wastewater from small settlements as major local sources for MF emissions in the Arctic. Fiber movement and distribution in the fjord mapped using an online-coupled hydrodynamic-drift model (FVCOM-FABM). For parameterizing a wider spectrum of fibers from synthetic to wool, four different density classes of MFs, i.e., buoyant, neutral, sinking, and fast sinking fibers are introduced to the modeling framework. The results clearly show that fiber class has a large impact on the fiber distributions. Light fibers remained in the surface layers and left the fjord quickly with outgoing currents, while heavy fibers mostly sank to the bottom and deposited in the inner parts of the fjord and along the northern shore. A number of accumulation sites were identified within the fjord. The southern shore, in contrast, was much less affected, with low fiber concentrations throughout the modeling period. Fiber distributions were then compared with published pelagic and benthic fauna distributions in different seasons at selected stations around the fjord. The ratios of fibers to organisms showed a very wide range, indicating hot spots of encounter risk for pelagic and benthic biota. This approach, in combination with in-situ ground-truthing, can be instrumental in understanding microplastic pathways and fate in fjord systems and coastal areas and help authorities develop monitoring and mitigation strategies for microfiber and microplastic pollution in their local waters.
Frontiers Media S.A.
2021
2021
2021
2021
2021
2021
2021
Eastward-propagating planetary waves prior to the January 2009 sudden stratospheric warming
American Geophysical Union (AGU)
2021
2021
2021
2021
Atmospheric corrosion due to amine emissions from carbon capture plants
The atmospheric corrosion due to pure amines emitted from carbon capture plants was investigated. Amine exposure was found to initially inhibit the corrosion of steel, by its film formation and alkalinity, but reduce corrosion product layers and lead to freezing point depression, which could in turn increase the corrosion. Very high amine doses were observed to dissolve the metal without the establishing of a corrosion layer. These effects seem much more pronounced on copper than on steel. Climate and air quality variations affect the steel corrosion much more than the expected maximum amine deposition from carbon capture plant emissions.
Elsevier
2021
2021
2021
The NextGEOSS Cold Region pilot: Improved discoverability and access to polar data
GEO Cold Regions coordinates global efforts to provide Earth Observation (EO) products and services to science, decision- and policy-makers with a vested interest in the cryosphere (in particular) and the environment (in general) of polar regions and mountain areas around the world. The NextGEOSS Cold Regions Pilot focuses on three areas: (1) the Arctic/Svalbard region, (2) Antarctica, and (3) the Himalayan glaciers, linking together satellite and in situ data from the targeted regions, including the atmospheric, marine, and terrestrial domains, and making them available in the NextGEOSS Data Hub and the NextGEOSS Cold Regions Community Portal. The pilot liaise with ongoing initiatives such as SIOS, GEOCRI, WMO GCW, as well as national programs in Antarctica. The products resulting from the Cold Regions pilot can be used to develop Information Services for the Cold Regions Initiative, using the NextGEOSS system and making use of existing interoperability standards. This presentation will introduce the first version of the Cold Regions Community Portal, aiming to make polar data relevant for Cold Regions more easily discoverable and accessible for users.
2021
We present 18 years (2001–2018) of aerosol measurements, including organic and elemental carbon (OC andEC), organic tracers (levoglucosan, arabitol, mannitol, trehalose, glucose, and 2-methyltetrols), trace elements, andions, at the Birkenes Observatory (southern Norway) – a site representative of the northern European region. The OC/EC (2001–2018) and the levoglucosan (2008–2018) time series are the longest in Europe, with OC/EC available for the PM10, PM2.5 (fine), and PM10–2.5 (coarse) size fractions, providing the opportunity for a nearly 2-decade-long assessment. Using positive matrix factorization (PMF), we identify seven carbonaceous aerosol sources at Birkenes: mineral-dust-dominated aerosol (MIN), traffic/industry-like aerosol (TRA/IND), short-range-transported biogenic secondary organic aerosol (BSOASRT), primary biological aerosol particles (PBAP), biomass burning aerosol (BB), ammonium-nitrate-dominated aerosol (NH4NO3), and (one low carbon fraction) sea salt aerosol (SS).
We observed significant (p < 0.05), large decreases in EC in PM10 (−3.9 % yr−1) and PM2.5 (−4.2 % yr−1) anda smaller decline in levoglucosan (−2.8 % yr−1), suggesting that OC/EC from traffic and industry is decreasing, whereas the abatement of OC/EC from biomass burning has beenslightly less successful. EC abatement with respect to anthropogenic sources is further supported by decreasing EC fractions in PM2.5 (−3.9 % yr−1) and PM10(−4.5 % yr−1).
PMF apportioned 72 % of EC to fossil fuel sources; this was further supported by PMF applied to absorption photometer data, which yielded a two-factor solution with alow aerosol Ångstrøm exponent (AAE=0.93) fraction, as-sumed to be equivalent black carbon from fossil fuel combustion (eBCFF), contributing 78 % to eBC mass. The higher AAE fraction (AAE=2.04) is likely eBC from BB (eBCBB). Source–receptor model calculations (FLEXPART) showed that continental Europe and western Russia were the main source regions of both elevated eBCBB and eBCFF.
Dominating biogenic sources explain why there was no downward trend for OC. A relative increase in the OC fraction in PM2.5(+3.2 % yr−1) and PM10(+2.4 % yr−1) underscores the importance of biogenic sources at Birkene (BSOA and PBAP), which were higher in the vegetative season and dominated both fine (53 %) and coarse (78 %) OC. Furthermore, 77 %–91 % of OC in PM2.5, PM10–2.5, and PM10 was attributed to biogenic sources in summer vs. 22 %–37 % in winter. The coarse fraction had the highest share of biogenic sources regardless of season and was dominated by PBAP, except in winter. Our results show a shift in the aerosol composition at Birkenes and, thus, also in the relative source contributions. The need for diverse offline and online carbonaceous aerosol speciation to understand carbonaceous aerosol sources, including their seasonal, annual, and long-term variability, has been demonstrated.
2021