Fant 9885 publikasjoner. Viser side 64 av 396:
Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2020.
Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2020 og trender over tid.
I den landsrepresentative skogovervåkingen har kronetettheten hos gran og furu holdt seg stabil i 2020 sammenlignet med tidligere år. Det ble registrert lite misfarging hos bartrærne.
Skadenivået hos både bartrær, bjørk og andre løvtrær var lavere enn i 2019. Abiotiske faktorer med snø, vind og tørke som de viktigste årsakene dominerte skadebildet hos alle treslag.
Kjemiske analyser av luft og nedbør i den intensive skogovervåkingen viser at det fortsatt er høyest verdier av antropogene svovel- og nitrogenforbindelser på den sørligste overvåkingsflata i Birkenes grunnet langtransportert forurensing. Den høyeste konsentrasjonen av nitrogendioksid i luft ble målt på stasjonen i Hurdal i 2020, noe som skyldes utslipp fra veitrafikken i regionen. Det var lave nivåer av bakkenært ozon i Norge i 2020 og ingen overskridelser av UNECEs grenseverdi på 5000 ppb-timer for skog. Vegetasjonsanalysene fra Hurdal har påvist en endring i bunn-vegetasjonens artssammensetning grunnet økt lystilgang og mye barnålstrø. Både hogst utenfor overvåkingsflata og flere skrantende, råteangrepne og døde grantrær i flata har bidratt til økt lystilgang og til større strømengde på bakken. Mange grantrær på flata i Hurdal er sterkt preget av råte med lav kronetetthet og mye misfarging. Flere trær på flata har dødd de seinere årene som følge av råteskader, ofte i kombinasjon med andre faktorer som vindfelling og skader etter tørken i 2018 med påfølgende barkbilleangrep.
Overvåking av bjørkemålere har vist at fjellbjørkeskogen både i Nord-Norge og fjellregionene i sørlige halvdel av landet har vært utsatt for betydelige utbrudd av bjørkemålere i løpet av perioden 2012–2018. Overvåkingsdata fra 2019 og 2020 tyder imidlertid på at målerbestandene nå er lave eller i sterk tilbakegang i det meste av landet. I Troms har målerbestandene allerede nådd et bunnpunkt, og bestandene er nedadgående også i fjellet i Sør-Norge. Vi forventer derfor at skogen i mesteparten av Norge vil bli mindre utsatt for angrep av bjørkemålere de neste par årene.
De fleste fylkene hadde en økning i fangstverdiene i barkbilleovervåkingen i 2020-sesongen. Alle fangstverdiene var imidlertid under 10 000 biller per felle, mens de høyeste verdiene ved slutten av utbruddet på 1970-tallet var rundt 25 000 biller per felle. Fylkene rundt Oslofjorden hadde noen lokale tilfeller av tørke- og barkbilleskader. Det ble ikke funnet noen tydelig økning av fellefangstene i tiden for en annen generasjon, men modellberegninger viser at stor granbarkbille har nok døgngrader til å gjennomføre to generasjoner før overvintring.
I august 2020 ble soppen Diplodia sapinea funnet på sterkt skadet vrifuru i Ås kommune. Tidligere har det blitt gjort noen få funn av soppen på andre bartrearter i det samme området. D. sapinea er vanlig i varmere strøk på flere kontinenter, spesielt på furuarter. De pågående klima-endringene har trolig bidratt til at soppen har kunnet spre og etablere seg mot nord, men vi kan heller ikke utelukke innførsel av soppen via plantemateriale til bruk i grøntanlegg eller skog. D. sapinea er trolig bare i etableringsfasen i Norge, og har til dags dato gjort liten skade på våre stedegne bartrær.....
NIBIO
2021
There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.
Springer
2021
This program, «Monitoring of environmental contaminants in freshwater ecosystems and single species in large Norwegian lakes”, has covered sampling and determination of environmental contaminants by analyses of organisms in an aquatic, pelagic food web of Lake Mjøsa, and in the top predator in Lake Femunden. Samples of different trophic levels, from epipelagic zooplankton to the top predator brown trout, were collected during the late stages of the growth season in 2020. In this report, the status of contamination in the food web, trends and biomagnification potential of various environmental contaminants is discussed.
Norsk institutt for vannforskning
2021
Emissions of Tetrafluoromethane (CF4) and Hexafluoroethane (C2F6) From East Asia: 2008 to 2019
The perfluorocarbons (PFCs), tetrafluoromethane (CF4) and hexafluoroethane (C2F6), are potent greenhouse gases with very long atmospheric lifetimes. They are emitted almost entirely from industrial sources, including the aluminum and rare earth metal smelting industries that emit them as by-products, and the semiconductor and flat panel display manufacturing industries that use them and vent unutilized amounts to the atmosphere. Despite extensive industrial efforts to quantify and curb these emissions, “top-down” PFC emission estimates derived from atmospheric measurements continue to rise and are significantly greater than reported process- and inventory-based “bottom-up” emissions. In this study, we estimate emissions of CF4 and C2F6 from East Asia, where PFC emitting industries are heavily concentrated, using a top-down approach (a Bayesian inversion) with high-frequency atmospheric measurements at Gosan (Jeju Island, South Korea) for 2008–2019. We also compile and analyze the available bottom-up CF4 and C2F6 emissions in East Asia from industrial and government reports. Our results suggest that the observed increases in global PFC emissions since 2015 are driven primarily by China's aluminum industry, with significant contributions from Japan's and Korea's semiconductor industry. Our analysis suggests that Chinese emissions occur predominantly from the aluminum industry, although their emissions per production ratio may be improving. Our results for Japan and Korea find significant discrepancies between top-down and bottom-up emissions estimates, suggesting that the effectiveness of emission reduction systems (abatement) used in their semiconductor industries may be overestimated. Overall, our top-down results for East Asia contribute significantly to reducing the gap in the global PFC emission budgets.
American Geophysical Union (AGU)
2021
2021
Climate Feedback From Wetland Emissions of Methane May Necessitate Greater Anthropogenic Reductions
John Wiley & Sons
2021
Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand
New Zealand was among the last habitable places on earth to be colonized by humans. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Māori settlement, but the precise timing and magnitude of associated biomass-burning emissions are unknown, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling demonstrates that the observed deposition could result only from increased emissions poleward of 40° S—implicating fires in Tasmania, New Zealand and Patagonia—but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Māori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y−1 during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere.
2021
Environmental pollutants in the terrestrial and urban environment 2020
Samples from the urban terrestrial environment in the Oslo area were analysed for metals and a large number of organic environmental pollutants. The selected species were earthworm, fieldfare, tawny owl, red fox and brown rat. Air- and soil-samples were also included in the study to further the understanding on sources and uptake of pollutants. A food-chain approach was used to investigate trophic magnification of the different compounds.
NILU
2021
2021
The historical (1835–2020) dry deposition of major air pollutants (SO2, NOx, O3 and PM2.5) in the urban background in Oslo, Norway, in a situation that could represent the building facades, was approximated from reported fuel combustion, emission factors, air concentrations since 1960, and dry deposition velocities. The annual accumulated dry deposition (and thus not considering the removal processes) of the pollutants, together, was found to have varied from about 2.3 to 27 g m−2, with the maximum in the 1960s caused by high SO2 emissions from the combustion of fuel oils, and with 1.6 kg m−2 having deposited over all the years. The deposition of PM2.5 was found to have dominated from 1835, have increased to a maximum in 1875 and then slowly decreased. The SO2 deposition decreased to a low value around 1990. The NOx deposition was also at its highest in the 1960s to about 1970, it became the largest from the 1980s, and then showed a clear decrease from about 2010. The O3 deposition was lower in the years of the maximum total and NOx deposition. The dry deposition of O3 and NOx were found to be about similar in 2020, more than two times that of PM2.5 and more than four times that of SO2. The trends of the NOx emissions were found to reflect the relative (1975) and absolute (∼2000) turning points of the environmental Kuznets curves (EKC) that has been suggested for Norway, whereas the trend of the SO2 emissions seems to have “shortcut” this development by the strong regulations in the emissions from 1970 that lead to near simultaneous relative and absolute reductions. The gradual decrease of the PM2.5 emissions from about 1945 seems to correspond with the decrease in combustion energy intensity in the economy as wood was substituted with more energy efficient fuels and then with the continued reduction in the wood burning.
Elsevier
2021
2021
Black Carbon (BC) aerosol is a major climate forcer in the Arctic. Here, we present 15 years (2001–2015) of surface observations of the aerosol absorption coefficient babs (corresponding to Equivalent BC), obtained at the Zeppelin Observatory, Ny Ålesund, Svalbard, coupled with backward transport modeling with Flexpart in order to calculate the Potential Source Contribution Function (PSCF) for BC. The observed long-term variability superimposed on a strong annual cycle is studied as a function of large-scale circulation patterns represented by monthly index values for the North Atlantic Oscillation (NAO) and the Scandinavian pattern (SCAN). We find a 35% increase of babs values at Zeppelin during the SCAN+ phase in the winter half-year compared to the SCAN+ phase but no significant difference in babs values between the NAO index phases. Both NAO and SCAN induce significant regional variability on the areas of origin of babs, mainly Siberia, Europe, and North America.
American Geophysical Union (AGU)
2021
The role of nature-based solutions for improving environmental quality, health and well-being
Nature-based solutions (NbS) have been positioned and implemented in urban areas as solutions for enhancing urban resilience in the face of a wide range of urban challenges. However, there is a lack of recommendations of optimal NbS and appropriate typologies fitting to different contexts and urban design. The analytical frameworks for NbS implementation and impact evaluation, that integrate NbS into local policy frameworks, socio-economic transition pathways, and spatial planning, remain fragmented. In this article, the NbS concept and its related terminologies are first discussed. Second, the types of NbS implemented in Europe are reviewed and their benefits over time are explored, prior to categorizing them and highlighting the key methods, criteria, and indicators to identify and assess the NbS’s impacts, co-benefits, and trade-offs. The latter involved a review of the websites of 52 projects and some relevant publications funded by EU Research and Innovation programs and other relevant publications. The results show that there is a shared understanding that the NbS concept encompasses benefits of restoration and rehabilitation of ecosystems, carbon neutrality, improved environmental quality, health and well-being, and evidence for such benefits. This study also shows that most NbS-related projects and activities in Europe use hybrid approaches, with NbS typically developed, tested, or implemented to target specific types of environmental–social–economic challenges. The results of this study indicate that NbS as a holistic concept would be beneficial in the context of climate action and sustainable solutions to enhance ecosystem resilience and adaptive capacity within cities. As such, this article provides a snapshot of the role of NbS in urban sustainability development, a guide to the state-of-the-art, and key messages and recommendations of this rapidly emerging and evolving field.
MDPI
2021
2021
PM10/PM2.5 comparison exercise in Oslo, Norway. Study in 2015-2016 and 2018.
The purpose of the comparison was to test for equivalence and establish calibration functions for automatic PM-analysers commonly used in Norway. The reference laboratory performed a field test at three different locations in Oslo during summer and winter conditions in the periods September 2015 to July 2016 and February to March 2018. Participating analysers were Palas Fidas 200, Grimm EDM 180, TEI TEOM 1405 DF, TEI FH 62 I-R, and R&P TEOM 1400AB.
The report proposes a system to carry out ongoing verification of equivalence in the Norwegian monitoring network and how to calibrate analyser data.
NILU
2021
The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project
The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project aims at monitoring global-scale nitrous oxide (N2O) sources by retrieving N2O surface fluxes from the inversion of space-borne N2O measurements that are sensitive to the lowermost atmospheric layers under favorable conditions. MIN2OS will provide emission estimates of N2O at a horizontal resolution of 1° × 1° on the global scale and 10 × 10 km2 on the regional scale on a weekly to monthly basis depending on the application (e.g., agriculture, national inventories, policy, scientific research). Our novel approach is based on the development of: 1) a space-borne instrument operating in the Thermal InfraRed domain providing, in clear sky conditions, N2O mixing ratio in the lowermost atmosphere (900 hPa) under favorable conditions (summer daytime) over land and under favorable and unfavorable (winter nighttime) conditions over the ocean and 2) an atmospheric inversion framework to estimate N2O surface fluxes from the atmospheric satellite observations. After studying three N2O spectral bands (B1 at 1240–1350 cm−1, B2 at 2150–2260 cm−1 and B3 at 2400–2600 cm−1), a new TIR instrument will be developed, centered at 1250–1330 cm−1, with a resolution of 0.125 cm−1, a Full Width at Half Maximum of 0.25 cm−1 and a swath of 300 km. To optimally constrain the retrieval of N2O vertical profiles, the instrument will be on-board a platform at ~830 km altitude in a sun-synchronous orbit crossing the Equator in descending node at 09:30 local time in synergy with two other platforms (Metop-SG and Sentinel-2 NG) expected to fly in 2031–32 aiming at detecting surface properties, agricultural information on the field scale and vertical profiles of atmospheric constituents and temperature. The lifetime of the MIN2OS project would be 4–5 years to study the interannual variability of N2O surface fluxes. The spectral noise can be decreased by at least a factor of 5 compared to the lowest noise accessible to date with the Infrared Atmospheric Sounding Interferometer-New Generation (IASI-NG) mission. The N2O total error is expected to be less than ~1% (~3 ppbv) along the vertical. The preliminary design of the MIN2OS project results in a small instrument (payload of 90 kg, volume of 1200 × 600 × 300 mm3) with, in addition to the spectrometer, a wide field and 1-km resolution imager for cloud detection. The instruments could be hosted on a small platform, the whole satellite being largely compatible with a dual launch on VEGA-C. The MIN2OS project has been submitted to the European Space Agency Earth Explorer 11 mission ideas.
2021
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.
2021
Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components
Norwegian Meteorological Institute
2021
Heavy metals and POPs: Pollution assessment of toxic substances on regional and global scales
Meteorological Synthesizing Centre - East
2021
Emission changes are the main driver of all air pollutant trends. For NO2 and PM10, both the GAM and the CTM results indicate that emission changes contribute to at least 90% of the 2000-2017 trend. For ozone peaks (as 4MDA8), meteorology can be important. The GAM model estimates that it contributes to an increase counteracting mitigation effort up to a magnitude of 20 to 80% (compared to the effect of emission and background changes) in Austria, Belgium, Czech Republic, France, and Italy. Given the good skill of the GAM model to capture meteorological effect, this estimate can be considered quite robust.
The relative contribution of agriculture and industry to the total PM10 mass has been reduced by around 30% for both sectors, but the similarity of evolution is not directly linked to the emission trends in the respective sectors. The relationship between emissions and concentrations is nonlinear and depends on availability of precursor gases to form ammonium sulphate and ammonium nitrate. The relative contribution of traffic sources to PM10 has been reduced with around 20%, while the trend attributed to residential heating is marginal. The heating sector has become a relatively more important contributor to the aerosol pollution and needs more attention. The model also indicates that the natural contributions (such as sea salt and dust) has had little impact on the long-term changes in PM10.
The analysis includes observational data only from stations with data available for at least 14 years in the period 2000-2017. This drastically reduces the number of monitoring sites included in the analysis and the spatial representativity of the assessment, with bias towards countries benefiting from a long-term monitoring network.
Further improvements of models as well as observational basis are needed to reduce the uncertainties. Understanding organic aerosols from the residential heating sector should be a priority.
ETC/ATNI
2021