Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10002 publikasjoner. Viser side 88 av 401:

Publikasjon  
År  
Kategori

Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018

Lee, Haebum; Lee, Kwangyul; Lunder, Chris Rene; Krejci, Radovan; Aas, Wenche; Park, Jiyeon; Park, Ki-Tae; Lee, Bang Yong; Yoon, Young Jun; Park, Kihong

We conducted continuous measurements of nanoparticles down to 3 nm size in the Arctic at Mount Zeppelin, Ny Ålesund, Svalbard, from October 2016 to December 2018, providing a size distribution of nanoparticles (3–60 nm). A significant number of nanoparticles as small as 3 nm were often observed during new particle formation (NPF), particularly in summer, suggesting that these were likely produced near the site rather than being transported from other regions after growth. The average NPF frequency per year was 23 %, having the highest percentage in August (63 %). The average formation rate (J) and growth rate (GR) for 3–7 nm particles were 0.04 cm−3 s−1 and 2.07 nm h−1, respectively. Although NPF frequency in the Arctic was comparable to that in continental areas, the J and GR were much lower. The number of nanoparticles increased more frequently when air mass originated over the south and southwest ocean regions; this pattern overlapped with regions having strong chlorophyll a concentration and dimethyl sulfide (DMS) production capacity (southwest ocean) and was also associated with increased NH3 and H2SO4 concentration, suggesting that marine biogenic sources were responsible for gaseous precursors to NPF. Our results show that previously developed NPF occurrence criteria (low loss rate and high cluster growth rate favor NPF) are also applicable to NPF in the Arctic.

2020

Patterns in the spectral composition of sunlight and biologically meaningful spectral photon ratios as affected by atmospheric factors

Kotilainen, Titta; Aphalo, Pedro J.; Brelsford, Craig C.; Böok, H.; Devraj, S.; Heikkilä, A.; Hernández, R.; Kylling, Arve; Lindfors, AV; Robson, T. Matthew

Plants rely on spectral cues present in their surroundings, generated by the constantly changing light environment, to guide their growth and reproduction. Photoreceptors mediate the capture of information by plants from the light environment over a wide range of wavelengths, but despite extensive evidence that plants respond to various light cues, only fragmentary data have been published showing patterns of diurnal, seasonal and geographical variation in the spectral composition of daylight. To illustrate patterns in spectral photon ratios, we measured time series of irradiance spectra at two distinct geographical and climatological locations, Helsinki, Finland and Gual Pahari, India. We investigated the drivers behind variation of the spectral photon ratios measured at these two locations, based on the analysis of over 400 000 recorded spectra. Differences in spectral irradiance were explained by different atmospheric factors identified through multiple regression model analysis and comparison to spectral irradiance at ground level simulated with a radiative transfer model. Local seasonal and diurnal changes in spectral photon ratios were related to solar elevation angle, atmospheric water-vapour content and total ozone column thickness and deviated from their long-term averages to an extent likely to affect plant photobiology. We suggest that future studies should investigate possible effects of varying photon ratios on terrestrial plants. Solar elevation angle especially affects the patterns of B:G and B:R ratios. Water vapour has a large effect on the R:FR photon ratio and modelled climate scenarios predict that increasing global temperatures will result in increased atmospheric water vapour. The development of proxy models, utilising available data from weather and climate models, for relevant photon ratios as a function of solar elevation angle and atmospheric factors would facilitate the interpretation of results from past, present and future field studies of plants and vegetation.

2020

Monitoring of environmental contaminants in air and precipitation. Annual report 2019.

Bohlin-Nizzetto, Pernilla; Aas, Wenche; Nikiforov, Vladimir

This report presents environmental monitoring data from 2019 and time-trends for the Norwegian programme for Long-range atmospheric transported contaminants. The results cover 200 organic compounds (regulated and non-regulated), 11 heavy metals, and organic chemicals of potential Arctic concern.

NILU

2020

Ozone measurements 2018

Hjellbrekke, Anne-Gunn; Solberg, Sverre

NILU

2020

Evaluation of traffic control measures in Oslo region and its effect on current air quality policies in Norway

Santos, Gabriela Sousa; Sundvor, Ingrid; Vogt, Matthias; Grythe, Henrik; Haug, Tormod Wergeland; Høiskar, Britt Ann Kåstad; Tarrasón, Leonor

Urban air pollution is a challenge in several European cities. For most Norwegian cities, the major challenge is the reduction of the NO2 annual mean concentration in order to comply with the limit value in the European Directive 2008/50/EC, but also too many high NO2 hourly values occur during strong inversions in cold winter periods. In Oslo, the main contributor to NO2 concentration levels is diesel exhaust and hence the proposed measures in this study are targeting road traffic. An extensive array of individual and grouped measures were constructed and we studied the change in traffic and NO2 concentrations by performing consecutive modelling studies which included traffic, emissions, and dispersion models. These measures were intended for permanent and temporary action. They included increases of the tolls that give access to the inner parts of the city, the establishment of low emission zones (LEZs), allowing for temporary free public transport, odd-even driving, defining priority lanes for low emission vehicles, and imposing higher parking fees. We concluded that the most efficient measures were the creation of LEZs and the increase of parking fees. We also explain how the findings from this work have helped to implement Norwegian air quality control policies.

2020

Evaluating the effectiveness of a stove exchange programme on PM 2.5 emission reduction

Lopez-Aparicio, Susana; Grythe, Henrik

Residential wood combustion (RWC) is one of the most important sources of particulate matter () in urban areas. As a consequence, different types of regulatory instruments are being implemented to reduce emissions. In this study, we evaluate both the potential and actual effect of a subsidy programme for stove exchange, which has been in place for over 20 years in Oslo (Norway). The subsidy programme provides economic support to the inhabitants for substituting old stoves for RWC with new and cleaner stoves as a measure to reduce emissions. Different approaches were selected to assess the potential effect of the Oslo subsidy programme. First, we evaluate the potential for reductions in emissions and pollution levels through the use of emission and dispersion modelling under different scenarios. We then assess the actual reductions associated with the stoves already replaced with the subsidy. We conclude the study by evaluating the time variation (2005 to 2018) in emissions, wood consumption and emission factors in Oslo in comparison with other municipalities with and without subsidy programmes in place. Results from emission and dispersion modelling show that the replacement of old wood stoves for new ones could have a significant effect on the reduction of emissions (up to 46%) and levels (up to 21%). Despite that, with near 8% of the total existing stoves in Oslo being exchanged with subsidy, the potential for reduction based on improved emission factors was estimated to be smaller by an order of magnitude. We find no evidence that municipalities with subsidy reduce emissions faster than those without subsidy. We therefore conclude that there is no evidence from our modelling results, supported by available observation data, that indicate that the emissions or concentrations in Oslo have been reduced as a result of the subsidy programme.

2020

Norske lekeplasser og kunstgressbaner er en kilde til forurensning i havet

Herzke, Dorte; Halsband, Claudia (intervjuobjekter); Markusson, Helge M. (journalist)

2020

Ice on fire

Myhre, Cathrine Lund; Mienert, Jürgen; Serov, Pavel (intervjuobjekter)

2019

Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2018 The state of health of Norwegian forests. Results from the national forest damage monitoring 2018

Timmermann, Volkmar; Andreassen, Kjell; Brurberg, May Bente; Børja, Isabella; Clarke, Nicholas; Flø, Daniel; Jepsen, Jane Uhd; Kvamme, Torstein; Nordbakken, Jørn-Frode; Nygaard, Per Holm; Pettersson, Martin; Solberg, Sverre; Solheim, Halvor; Talgø, Venche; Vinstad, O.P.L; Wollebæk, Gro; Økland, Bjørn; Aas, Wenche

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2018 og trender over tid for følgende temaer: (i) Landsrepresentativ skogovervåking; (ii) Skogøkologiske analyser og målinger av luftkjemi på de intensive overvåkingsflatene; (iii) Overvåking av bjørkemålere i Troms og Finnmark; (iv) Granbarkbilleovervåking – utvikling av barkbillepopulasjonene i 2018; (v) Ny barkbille på vei – vil den like klimaet?; (vi) Phytophthora i importert jord på prydplanter og faren det utgjør for skog; (vii) Overvåking av askeskuddsyke; (viii) Skog- og utmarksbranner i 2018; (ix) Andre spesielle skogskader i 2018...….

NIBIO

2019

Very Strong Atmospheric Methane Growth in the 4 Years 2014-2017: Implications for the Paris Agreement

Nisbet, E. G.; Manning, M. R.; Dlugokencky, E. J.; Fisher, R. E.; Lowry, D.; Michel, S. E.; Myhre, Cathrine Lund; Platt, Stephen Matthew; Allen, G.; Bousquet, P.; Brownlow, R.; Cain, M.; France, J. L.; Hermansen, Ove; Hossaini, R.; Jones, A. E.; Levin, I.; Manning, A. C.; Myhre, Gunnar; Pyle, J. A.; Vaughn, B.; Warwick, N. J.; White, James W. C.

Atmospheric methane grew very rapidly in 2014 (12.7 ± 0.5 ppb/year), 2015 (10.1 ± 0.7 ppb/year), 2016 (7.0 ± 0.7 ppb/year), and 2017 (7.7 ± 0.7 ppb/year), at rates not observed since the 1980s. The increase in the methane burden began in 2007, with the mean global mole fraction in remote surface background air rising from about 1,775 ppb in 2006 to 1,850 ppb in 2017. Simultaneously the 13C/12C isotopic ratio (expressed as δ13CCH4) has shifted, has shifted, now trending negative for more than a decade. The causes of methane's recent mole fraction increase are therefore either a change in the relative proportions (and totals) of emissions from biogenic and thermogenic and pyrogenic sources, especially in the tropics and subtropics, or a decline in the atmospheric sink of methane, or both. Unfortunately, with limited measurement data sets, it is not currently possible to be more definitive. The climate warming impact of the observed methane increase over the past decade, if continued at >5 ppb/year in the coming decades, is sufficient to challenge the Paris Agreement, which requires sharp cuts in the atmospheric methane burden. However, anthropogenic methane emissions are relatively very large and thus offer attractive targets for rapid reduction, which are essential if the Paris Agreement aims are to be attained.
PLAIN LANGUAGE SUMMARY: The rise in atmospheric methane (CH4), which began in 2007, accelerated in the past 4 years. The growth has been worldwide, especially in the tropics and northern midlatitudes. With the rise has come a shift in the carbon isotope ratio of the methane. The causes of the rise are not fully understood, and may include increased emissions and perhaps a decline in the destruction of methane in the air. Methane's increase since 2007 was not expected in future greenhouse gas scenarios compliant with the targets of the Paris Agreement, and if the increase continues at the same rates it may become very difficult to meet the Paris goals. There is now urgent need to reduce methane emissions, especially from the fossil fuel industry.

2019

ICOS Norway – a carbon cycle infrastructure

Lauvset, Siv Kari; Myhre, Cathrine Lund; Lange, Holger; Olsen, Are; Stohl, Andreas

2019

Observations of microbarom-generated infrasound in Northern Norway during three different sudden stratospheric warmings

Näsholm, Sven Peter; Assink, Jelle; Blixt, Erik Mårten; Carlo, Marine De; Evers, Läslo G.; Gibbons, Steven John; Kero, Johan; Pichon, Alexis Le; Orsolini, Yvan; Ouden, Oliver F. C. den; Smets, Pieter S

2019

Opportunities and barriers for microsensor systems for air quality: practical experiences from Oslo

Bartonova, Alena; Castell, Nuria; Schneider, Philipp; Dauge, Franck Rene; Grossberndt, Sonja; Lepioufle, Jean-Marie; Liu, Hai-Ying; Fredriksen, Mirjam; Høiskar, Britt Ann Kåstad

2019

Individual variability in contaminants and physiological status in a resident Arctic seabird species

Eckbo, Norith; Bohec, Céline Le; Planas-Bielsa, Victor; Warner, Nicholas Alexander; Schull, Quentin; Herzke, Dorte; Zahn, Sandrine; Haarr, Ane; Gabrielsen, Geir W.; Borgå, Katrine

2019

Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes

Boy, Michael; Thomson, Erik S.; Navarro, Juan-Camilo Acosta; Arnalds, Olafur; Batchvarova, Ekaterina; Bäck, Jaana; Berninger, Frank; Bilde, Merete; Brasseur, Zoé; Dagsson-Waldhauserova, Pavla; Castarède, Dimitri; Dalirian, Maryam; Leeuw, Gerrit de; Dragosics, Monika; Duplissy, Ella-Maria; Duplissy, Jonathan; Ekman, Annica; Fang, Keyan; Gallet, Jean-Charles; Glasius, Marianne; Gryning, Sven-Erik; Grythe, Henrik; Hansson, Hans-Christen; Hansson, Margareta; Isaksson, Elisabeth; Iversen, Trond; Jónsdóttir, Ingibjörg Svala; Kasurinen, Ville; Kirkevåg, Alf; Korhola, Atte; Krejci, Radovan; Kristjansson, Jon Egill; Lappalainen, Hanna K.; Lauri, Antti; Leppäranta, Matti; Lihavainen, Heikki; Makkonen, Risto; Massling, Andreas; Meinander, Outi; Nilsson, E. Douglas; Ólafsson, Haraldur; Pettersson, Jan B. C.; Prisle, Nønne L.; Riipinen, Ilona; Roldin, Pontus; Ruppel, Meri; Salter, Matthew E.; Sand, Maria; Seland, Øyvind; Seppä, Heikki; Skov, Henrik; Soares, Joana; Stohl, Andreas; Ström, Johan; Svensson, Jonas; Swietlicki, Erik; Tabakova, Ksenia; Thorsteinsson, Throstur; Virkkula, Aki; Weyhenmeyer, Gesa A.; Wu, Yusheng; Zieger, Paul; Kulmala, Markku

The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols.

The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change–cryosphere interactions that affect Arctic amplification.

2019

An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US

Blyverket, Jostein; Hamer, Paul David; Bertino, Laurent; Albergel, Clément; Fairbairn, David; Lahoz, William A.

A number of studies have shown that assimilation of satellite derived soil moisture using the ensemble Kalman Filter (EnKF) can improve soil moisture estimates, particularly for the surface zone. However, the EnKF is computationally expensive since an ensemble of model integrations have to be propagated forward in time. Here, assimilating satellite soil moisture data from the Soil Moisture Active Passive (SMAP) mission, we compare the EnKF with the computationally cheaper ensemble Optimal Interpolation (EnOI) method over the contiguous United States (CONUS). The background error–covariance in the EnOI is sampled in two ways: (i) by using the stochastic spread from an ensemble open-loop run, and (ii) sampling from the model spinup climatology. Our results indicate that the EnKF is only marginally superior to one version of the EnOI. Furthermore, the assimilation of SMAP data using the EnKF and EnOI is found to improve the surface zone correlation with in situ observations at a 95% significance level. The EnKF assimilation of SMAP data is also found to improve root-zone correlation with independent in situ data at the same significance level; however this improvement is dependent on which in situ network we are validating against. We evaluate how the quality of the atmospheric forcing affects the analysis results by prescribing the land surface data assimilation system with either observation corrected or model derived precipitation. Surface zone correlation skill increases for the analysis using both the corrected and model derived precipitation, but only the latter shows an improvement at the 95% significance level. The study also suggests that assimilation of satellite derived surface soil moisture using the EnOI can correct random errors in the atmospheric forcing and give an analysed surface soil moisture close to that of an open-loop run using observation derived precipitation. Importantly, this shows that estimates of soil moisture could be improved using a combination of assimilating SMAP using the computationally cheap EnOI while using model derived precipitation as forcing. Finally, we assimilate three different Level-2 satellite derived soil moisture products from the European Space Agency Climate Change Initiative (ESA CCI), SMAP and SMOS (Soil Moisture and Ocean Salinity) using the EnOI, and then compare the relative performance of the three resulting analyses against in situ soil moisture observations. In this comparison, we find that all three analyses offer improvements over an open-loop run when comparing to in situ observations. The assimilation of SMAP data is found to perform marginally better than the assimilation of SMOS data, while assimilation of the ESA CCI data shows the smallest improvement of the three analysis products.

2019

Causes of surface energy imbalances of eddy covariance measurements in mountainous terrain

Pirk, Norbert; Ramtvedt, Eirik Næsset; Decker, Sven; Cassiani, Massimo; Burkhart, John; Stordal, Frode; Tallaksen, Lena M.

2019

Publikasjon
År
Kategori